Connect with us

Fizik / Astrofizik

Maddenin Tam Zıddı: Antimadde

Bu yazıyı yaklaşık 20 dakikada okuyabilirsiniz.

Antimadde, toplum tarafından ne olduğu tam anlaşılmamış bilimsel bir gerçektir. Bu nedenle sizler için inceleyip sadeleştirerek nedir, ne değildir, nasıl üretilir, ne işe yarar diye anlatmaya karar verdik: Antimadde; sizi, evlerinizi, Dünya’yı, galaksileri, kısacası evreni oluşturan bildiğimiz maddenin zıttı. Tam tersi elektrik yükü taşıyan madde çeşididir.

ANTİMADDE NE DEĞİLDİR?

Antimaddenin ne olduğunu detaylı anlatmadan önce, ne olmadığı hakkında bilgi vererek yanlış bilgileri arındırmak istiyoruz.

Karanlık Madde
Evrendeki kütlenin yaklaşık olarak %84,5’ini oluşturan ancak dolaylı yollar haricinde (etkileri) henüz gözlemleyemedimiz ve karanlık madde olarak isimlendirdiğimiz hipotez madde, antimadde değildir.

Karanlık Enerji
Evrenin genişlemesinden sorumlu bir hipotez olarak kabul edilen ancak doğrudan gözlemi henüz yapılamayan karanlık enerjinin antimadde ile bir ilgisi yoktur.

Negatif Kütle
Antimadde negatif kütleye sahip değildir: Bildiğimiz anlamdaki madde, diğer maddeleri kendisine doğru çeken bir kütleçekimi oluştururken, antimadde iter fikri tamamen yanlıştır. Antimadde ters elektrik yüküne sahiptir evet ama, kütleçekimi yük taşımaz. Bu nedenle normal parçacıklar ve anti-parçacıklar aynı çeşit kütleye sahiplerdir.

Bir hipotez olarak Negatif kütleli egzotik madde çeşitleri, 0.0 kilogramdan daha az kütleye sahiplerdir ve quantum mekaniklerinde sadece bazı genel görelilik teorilerini ihlal ederek varlıkları mümkün olabilir. Neyse ki imkansızı zorlayan bilim insanları var. Negatif kütleye sahip maddenin mümkün olabileceği hal ve durumlar ile ilgili orjinal bir araştırma yazısı aşağıda ki linkte meraklılarını beklemekte. http://arxiv.org/pdf/1407.1457v2.pdf

Negatif Enerji
Antimadde negatif enerjiye sahip değildir: Negatif enerji olarak tabi edilen sıfır enerji seviyesinden düşük negatif enerji durumları, sadece belli quantum sistemlerinde geçerlidir. Antimadde, normal madde gibi pozitif enerji değerlerine sahiptir sadece elektrik yükü ve dönüş hareketi yönlerinde farklılıklar içerir.

Bilimkurgu
Antimadde bilimkurgu değildir, yeteri kadar üretimini yapabileceğimiz ucuz metotlar geliştirebilirsek bir gün sanayinin ve enerji üretiminin belkemiğini oluşturabilir. Şu anda birçok deneyde ve cihazda antiparçacık ve antimadde türevleri kullanılmaktadır.

ANTIMADDE NEDİR?

Sıradan madde ile aynı kütleye sahip ancak farklı elektrik yükü, farklı lepton & baryon sayısı ve farklı quantum spin yönüne sahip antiparçacıklardan oluşmuş materyale antimadde denir.

Kısa Bilgi: Parçacık fiziğiyle ilgili terimler kullanmaya başladığımıza göre bazı temel terimlerle ilgili bilgi verelim.

SPIN: Spin bir yönü ve değeri olan, neredeyse bütün atomaltı parçacıkların sahip olduğu bir momentumdur. Higgs Bozonu ve bazı kuramsal parçacıklar hariç, bütün parçacıklar spin sahibidir.

HADRON: CERN’deki ünlü “Large Hadron Collidor” parçacık hızlandırıcısına ismini veren Hadronlar, quarklardan oluşan ve güçlü nükleer kuvvet ile bir arada tutulan stabil proton, nötron (Baryonlar) ve stabil olmayan birçok parçacığı (Mesonlar) kapsayan bir ailedir

MESON: Yüksek enerjili çarpışmalarda ortaya çıkan Hadron sınıfından olan, çok kısa ömürlü parçacıklardır. Mesonlar, bir quark ve bir anti quarktan oluşurlar.

BARYON: 3 Quarktan oluşan Hadron sınıfı parçacıklardır. Ünlü proton ve nötronlar birer baryon türüdür. Bilinen evrende, gözlemlediğimiz kadarıyla baryonik madde hakimdir.

LEPTON: Elektron benzeri parçacıkları içeren bir parçacık ailesidir. Elektronlar, Elektron Nötrinoları, Muonlar, Muon Nötrinoları, Taular ve Tau Nötrinoları lepton ailesini oluşturur.

QUARK: Hadronların yapı taşı olan quarklar, asla doğrudan gözlemlenemez ya da izole halde bulunamazlar. Sadece Baryon ve Meson denen Hadron sınıfı parçacıklarda bulunurlar. Elektrik yükü, kütle, renk ve dönüş gibi özellikler quarklardan gelir. Bunlar böyle özellikler taşıyan küçük toplar yerine, matematiksel özellik noktaları olarak düşünülmelidirler. Quarkların oluşturduğu daha büyük parçacıklar içerisindeki quarklar, parçacığın ne olacağını belirler. Quarklar kendi aralarında da 6 tipe ayrılır. Bunlar Up (Yukarı), Down (Aşağı), Strange (Acayip), Charm (Tılsım), Top (Üst), Bottom (Alt) olarak isimlendirilir. Up ve Down Quarklar evrende en çok bulunan oldukça stabil ve düşük kütleli parçacıklardır. Diğer Quark çeşitleri; kozmik ışın çarpışmaları ya da parçacık hızlandırıcılar gibi yüksek enerjili çarpışmalarda oluşup, hızlı şekilde “parçacık bozunumu” geçirerek düşük kütleli Up ve Down quarklara bozunurlar.

“FORCE CARRIER” PARÇACIKLAR: Parçacıklar arasında “Field (Alan)” denen güçleri taşıyan parçacıklardır. Fotonlar elektromanyetizmayı taşır, Gluonlar güçlü nükleer kuvveti, W ve Z bosonları zayıf nükleer kuvveti ve kuramsal Gravitonlar kütleçekimini taşıyan diğer parçacıklardır.

ANTİQUARKLAR: Antimadde ve dolayısıyla antiparçacıkların temel yapı taşları olan quarklar normal quarklara oldukça benzer ve tahmin edebileceğiniz gibi tek farkları eşdeğerlerinin tersi özelliklere sahip olmalarıdır.

FERMİON VE BOSON SINIFLANDIRMALARI: Bosonlar yukarıda anlattığımız Mesonların ve force carrier parçacıklar denen parçacıkların bulunduğu ailedir. Spin denen momentumları tam sayılar ile ifade edilir (+1, +2). Fermionlar ise yukarıda geçen Lepton, Quark ve Baryonları kapsayan ailedir. Quantum spinleri tam sayı değildir, 1/2 olarak ifade edilirler.

Yazımıza devam edelim;
Maddeyi oluşturan atomun çekirdeğinde; nükleüs (nucleus) dediğimiz pozitif yüklü proton(lar) ve yüksüz nötron(lar) bulunur. Nükleüs çevresinde ise negatif yüklü elektron veya elektronlar, sahip oldukları enerjiye göre çeşitli yörüngelerde yer alırlar.

atom_zoom_b

Antimaddede ise antiprotonlar negatif yüklüdür, pozitron denen antielektronlar ise pozitif yüklüdür. Evrenimiz bizim için normal olan maddenin hakimiyetindedir. Eser miktarda antimadde evrende gözlense bile, Big Bang (Büyük Patlama) ile ortaya çıkmış olması gereken miktardan çok çok azdır. Big Bang teorilerine göre, antimadde ve madde eşit miktarda oluşmuş olmalıydı.

BARYON ASİMETRİSİ

Çoğunlukla çevremizdeki her şeyi oluşturan Baryonik madde gözlemlenebilir evrende bu kadar ağırlıktayken, eser miktardaki antimaddeyi oluşturan antibaryonlar ile ciddi bir eşitsizlik vardır.

Genel kabul gören kanıya göre; Big Bang’de parçacıkların ve antiparçacıkların eşit miktarda oluşmuş olması ve bunun sonucunda da bütün parçacıkların birbirlerini imha ederek evreni bütün maddelerden arınmış bir radyasyon denizi olarak bırakmaları gerekirdi. Ancak Baryogenessis olarak isimlendirilen, henüz hipotez olarak kabul edilen bir aşamada normal quark ve leptonlar, antiquark ve antileptonlara baskın gelerek antiparçacıkların sayısını bugünkü evreni oluşturacak şekilde azalttılar. Çeşitli hipotezler bu asimetriye farklı açıklamalar getirse de CP simetrisi ihlali denen açıklama en kabul görenidir.

Kısa Bilgi: 
Evrende antimadde yerine neden maddenin baskın olduğu yada Büyük Patlama’dan sonra neden bütün herşeyin birbirini yok etmediğini anlatabilmek için CPT teoreminden bahsetmemiz gerekiyor.

CPT simetrisi: C (Charge / Yük), P (Parity – Spatial Configuration / Uzaysal konum), T (Time / +Zaman) simetrileri anlamına gelir.
Maddenin herhangi bir özelliği bu simetriler yönünden bir değişim geçirdiğinde “aynadaki yansıması” gibi tersi bir hal almalıdır. Yani madde yük simetrisi yönünden tersinme geçirdiğinde antimadde olur. Uzaysal konumu tersinme geçirdiğinde x, y, z düzlemlerindeki konumu -x, -y, -z düzlemlerinde olur, kısaca aynadaki görüntüsü benzer. Zaman simetrisinde bir tersinme ise temel olarak “t” değerinin “-t” olmasıdır. Zaman akışının tersine işlemesi anlamına gelir ve tabiki gözlemlenebilir evrende böyle birşey gerçekleşmediği için şimdilik makro seviyede zaman asimetrik diyebiliriz.

Sözün özü C ve P simetrilerine göre antimadde normal maddenin aynadaki bir yansıması gibi olmalıdır, bütün herşey tersi yönde işlemelidir. Ama pratikte bu gerçek değildir, antimadde tam anlamıyla maddenin yansıması gibi değildir. Buna CP violation (ihlal) denir.

CP İhlali: CP simetrileri yükü ve uzaydaki konumu tersine dönen bir madde için fizik kanunlarının aynı kalması gerektiğini söyler ancak, bunun doğru olmadığı ortaya çıktı. Bir meson türü olan nötr Kaon parçacıklarının positron ve elektron bozunumları arasındaki eşitsizlik (pozitron bozunumunun daha fazla olması) bir CP ihlalidir. Bu ve benzeri bazı parçacıklarda eşitsizlikler, maddenin nasıl antimaddeye baskın geldiğini açıklamakta kullanılabilir.

ANTİPARÇACIKLARIN KEŞFİ

Antimadde terimi ilk olarak ingiliz fizikçi Sir Arthur Schuster tarafından 1898’de Nature dergisi için kaleme alınan bir makalede geçmektedir. Schuster atomların zıt özelliklere sahip eşdeğerleri olabileceğini, normal madde ile birbirlerini iteceklerini, hatta anti atomlardan yıldız sistemleri olabileceğini öne sürmüştür. Öne sürdüğü bu hipotez, eksiklerine rağmen bugünkü antimadde anlayışımızın temelini oluşturmuştur.

diracdenklemi

Ünlü devrimsel Dirac Denklemi…

 

Modern antimadde teorisi Paul Dirac tarafından 1928’de yazıldı. Dirac, Dirac Denklemi adı verilen teorisi ile quantum mekaniklerini (atomaltı dünyası), Einstein’ın özel göreliliği (çok büyük şeylerin dünyası) ile birleştirdi. Denklemi aynı zamanda hem elektronlar, hem de elektronların pozitif yüklü versiyonları (pozitronlar) ile geçerli bir şekilde çalışıyordu. Yani denklem pozitronları öngörüyordu. Böylece bütün parçacıkların karşıt yüklü bir antiparçacığı olabileceği ve antiparçacıkların bir araya gelerek antiatomlar ve antimadde oluşturabileceği hipotezi ortaya çıktı.

Dirac denklemi, aynı zamanda daha önce asla gözlemlenmemiş birşeyi öngören ilk denklem ünvanını da taşıyarak Dirac’a 31 yaşında Nobel ödülü kazandırdı.

Pozitron:
Doğada radyoaktif elementlerin beta bozunumları ve kozmik ışınların atmosferimize çarpışı sonucu ortaya çıkan pozitronları ilk gözlemleyen bilim insanları şunlardır: Sovyet fizikçisi Dmitri Skobeltsyn, 1929’da Wilson çemberi denen bir cihaz ile (kapalı bir ortamda süper doymuş su veya alkol buharı içeren parçacık dedektörü), kozmik ışınlardan kaynaklanan gamma radyasyonunu tespit etmeye çalışırken, elektronlar gibi hareket eden ancak manyetik bir alanda elektronların izleyeceği yolun tersini izleyen parçacıklar keşfetmişti. Aynı sene Çinli fizikçi Chung-Yao Chang da benzer bir gözlem yaparak elektron benzeri pozitif yüklü parçacıklar tespit etmişti. Ancak araştırmalarını bu konuda sürdürmedi.

1932’de Amerikalı fizikçi Carl D. Anderson benzer yöntemler ile bu parçacığı gözlemleyip tanımlayan ve araştırmalarını bu yönde sürdüren bir diğer bilim insanıdır. Anderson, elektronun tersi yüklü bu parçacığın tam tanımını yaparak Nobel ödülü kazanmıştır.

Pozitron, günümüzde beta bozunumlarının yanı sıra, parçacık hızlandırıcılarda ve Lawrance Livermore ulusal laboratuvarında yeni bir yöntem olan milimetre kalınlığında altın hedeflere lazer uygulanarak üretilmektedir.

Antiproton:
Negatif (-1) yüklü proton parçacıkları 1955’te California üniversitesinde fizikçiler Emilio Segrè ve Owen Chamberlain tarafından gözlemlenmiştir. İkiliye Nobel ödülü kazandıran antiprotonların normal protonlardan en büyük farkları, normal protonların tersi olan negatif elektrik yüküne ve tersi manyetik momente sahip olmalarıdır.

Normal protonların yapıtaşları iki adet up quark ve bir adet down quarktır. Antiprotonlar CERN ve Fermilab’de rutin olarak üretilmektedirler.

Antinötron:
Nötron yüksüzdür ve bir adet up quark, iki down quarktan oluşur. Antinötronda ise bu quarkların yerinde antiquarklar vardır. Antinötron, antiprotonun keşfinden bir yıl sonra 1956’da Lawrence Berkeley Ulusal Laboratuvarları’nda Bruce Cork tarafından keşfedilmiştir. Elektrik yükü olmadığı için gözlemi zordur ve genellikle nötron-antinötron çarpışmaları sayesinde gözlemlenebilirler.

Majorana Fermion:
Konu antimade ise, yakın zamandaki keşiflerden bahsetmemek olmaz. Princeton üniversitesinde Ali Yazdani tarafından 1937’de İtalyan fizikçi Ettore Majorana’nın öngördüğü bir parçacık keşfedildi.

Kurşundan yapılmış bir süperiletken üzerine demir atomları yerleştirilen deneyde, normal olarak demir atomlarının manyetik alanlarının süperiletkenlere etki etmesi gerekirdi. Ancak deneyde demir atomları da süperiletken bir hal aldı (Elektronları hem manyetizma hem de süper iletkenlik özellikleri gösterecek şekilde spinlerini koordine ettiler).

Böylece elektronlardan biri normal elektron kalırken, diğeri pozitron özellikleri gösterdi. Sonuçta demir atomları Majorana parçacığı denen hem madde hem antimadde özellikleri taşıyan bir hal almış oldu. Bu parçacıklar süper iletkenler yakınında oluşmuş ve varlıklarını süper iletkenlerden uzakta sürdürememişlerdir.

MADDE – ANTİMADDE ÇARPIŞMASI

Bir elektron ve pozitronu çarpıştıralım. Ne olur acaba?

Elektron ve anti parçacığı olan pozitronun çarpışması.

 

İki parçacık birbilerini yok ederek iki parça gamma ışını açığa çıkarırlar. Proton ve Antiproton çarpışması ise biraz daha faklıdır. Kompozit parçacıklar olan (normal+anti) protonlardaki karşıt quarkların bir kısmı birbirlerini imha ederken, geri kalanı kararsız mesonlar oluşturarak dağılır. Bu mesonlar da kısa sürede bozunurlar.

DOĞADA ANTİMADDE OLUŞUMU

Vücudunuzda antimadde üretimi yapıldığını biliyormuydunuz? Doğadaki bazı ufak ve bazı muazzam antimadde fabrikaları gibi vücudumuz da antiparçacıklar saçmaktadır.

Potasyum-40: Antimadde parçacık hızlandırıcılardan en akla hayale gelmeyen şeylere, örneğin muzlara ve insan vücuduna kadar her yerde açığa çıkabilmektedir.

Muzda bulunan Potasyum-40 izotopları, beta bozunumu geçirirken her 75 dakikada bir pozitron açığa çıkarırlar. Aynı potasyum-40 insan vücüdunda da bulunur ve aynı şekilde pozitron açığa çıkarmaktadır. Ancak merak etmeyin bu düşük miktarlar size zarar vermez. Radyoaktif maddeler ve geçirdikleri bozunumlar ile ilgili detaylı bilgi için bu yazımıza göz atabilirsiniz.

Fırtınalar: Fırtınalar yağmurlardan, dolulardan, sert rüzgarlardan ve yıldırımlardan daha fazlasını üretmektedir. NASA’nın yörüngedeki Fermi Gamma-Işını teleskobu hergün 500 adet TGF (terrestrial gamma-ray flash), yani dünyasal gamma ışını parlaması olayı gözlemlemekte. Bunlar güçlü fırtınaların tepelerindeki elektrik sahalarının, ışık hızına yakın hızlarda dikey olarak uzaya gönderdiği elektronların atmosferdeki diğer moleküller ile çarpışması sonucu ürettikleri gamma ışınlarıdır. Bu gamma ışınları o kadar kuvvetlidir ki, uzaya elektron ve pozitronlar (antielektron) saçarlar ve bu parçacıkların bizzat Fermi’ye çaptıkları tespit edilmiştir.

Kozmik ışınların atmosferimize çarpışı da çok düşük miktarlarda pozitron ve antiproton açığa çıkarmaktadır. Bunlar normal madde ile karşılaşana kadar Dünya’ya “yağarlar”. Çarpışmalar sırasında açığa çıkan parçacıkların bir kısmı da uzaya saçılarak manyetik alan tarafından hapsedilip Van Allen radyasyon kuşaklarında toplanırlar.

Devasa yıldızların geçirdiği çift-instabilitesi süpernovaları (Pair-Instability Supernova), çekirdekteki elektron ve pozitron çarpışmalarının artışıyla düşen radyasyon basıncının, yıldızın dış katmanlarını taşıyamaz hale gelmesiyle olur. Kendi ağırlığı ile çökmeye başlayan yıldızda füzyon reaksiyonları tepe noktasına ulaşır ve termonükleer bir patlama ile yıldız infilak ederek geriye bir karadelik ya da nötron yıldızı bırakmayacak şekilde dağılır.

X-Işını İkilileri (X-Ray Binaries): Maddenin bir yıldızdan (genellikle normal bir yıldız) diğerine “düştüğü” (genellikle bir kara delik, nötron yıldızı veya beyaz cüce) ikili yıldız sistemlerinde yüksek miktarlarda pozitron açığa çıkıp manyetik alanlar ile ışık hızına yakın hızlarda uzaya saçılmaktadırlar.

YAPAY ANTİMADDE ÜRETİMİ & KULLANIM ALANLARI

Antimadde Dünya üzerindeki en nadir, üretimi en zor ve en pahalı materyaldir. Altın ve Elmas gibi nadir ve değerli materyaller, antimadde yanında ancak çakıl taşı kadar değerlidirler. Üretim zorluğu ve yavaşlığı sebebiyle 1 gram antimaddenin şu anki değeri yaklaşık 62.5 trilyon dolara denk gelir. Antimaddeyi ikinci olarak gramı 27 milyon dolar ile Californium-252 elementi takip etmektedir. Eğer antimaddeyle gerçekten kıyaslayacak başka bir materyal arıyorsanız, bazı bilim insanlarının bir kaç karanlık madde parçacığı için Dünyayı teslim edebileceklerini söyleyebiliriz.

Antimadde

Antimaddenin insan sağlığı alanındaki en yaygın kullanımı, PET tarama cihazlarıdır.

 

Antiparçacıklar nanogramdan daha düşük seviyelerde parçacık hızlandırıcılarda üretilebilmektedir. Daha da düşük seviyelerde ise, çeşitli radyoaktif elementlerin bozunum sonucu antiparçacıklar açığa çıkmaktadır. Keşfedilen ilk antiparçacık pozitron da bu şekilde keşfedilmiştir ve günümüzde bozunum sonucu ortaya çıkan pozitronların tıpta önemli bir kullanım alanı mevcuttur.

PET taramaları (Positron Emission Tomograph / Positron Emisyon Tomografisi): PET tarayıcıları elektronun karşıt parçacıkları olan pozitronları kullanır. Bu taramalarda dolaşım sistemine enjekte edilen Fluorine-18 gibi kısa ömürlü bir radyoaktif bir izotop, pozitron yayan bir bozunum geçirir. Bu pozitronlar dokuda 1mm gibi kısa bir mesafe kat ederler. Bu sürede kinetik enerjileri azalır ve sonunda bir elektron ile temas ederek birbirlerini yok edip, birbirinin aksi yönünde hareket eden gamma ışınları (yüksek enerjili fotonlar) oluştururlar. PET tarayıcısı aynı anda oluşup birbirlerinin aksi yönünde hareket eden bu gamma ışınlarını tespit ederek taranan bölgenin üç boyutlu bir resmini çıkartır.

PAS (Positron Annihilation Spectroscopy / Positron İmha Spektrokobisi): Deneysel bir cihaz olan PAS, materyal araştırmalarında kullanılmaktadır. Herhangi bir metal, süperiletken ya da polimer benzeri malzemeye gönderilen pozitronların, elektronlar ile çarpışıp gamma ışını üretmesiyle atomik seviyelerde materyal yapısı ve kusur analizi çalışmaları yapılabilmektedir.

Parçacık Hızlandırıcıları

Parçacık hızlandırıcıları, elektromanyetik alanlar yoluyla yüklü parçacıkları inanılmaz süratlere hızlandıran makinelerdir. Birçok kullanım alanları olsa da en önemlisi yüksek enerji fiziğidir. Dünya’da irili ufaklı 30.000’den fazla parçacık hızlandırıcı vardır ve bunların sadece 1%’i 1 GeV enerjisi üstündedir.

Not: Türkiye’de de bir parçacık hızlandırıcı kurulum çalışması uzun yıllardır devam ediyor. Temel eğitim düzeyinde (1 GeV altı) küçük bir parçacık hızlandırıcısının yapımını öngören projenin gidişatı hakkında bilgi almak için şu linki ziyaret edebilirsiniz.

Böylesi hızlandırıcılar çok yüksek yoğunluk ve ısılar ile parçacıkları çarpıştırarak Big Bang’in ilk anlarındaki ortamı oluşturmaya çalırken, maddeyi oluşturan temel parçacıkları açığa çıkarmaktadırlar. Kaba tabirle bir parçacık hızlandırıcısı ne kadar güçlü olursa, o kadar derinlere ineriz. Bazı insanların “tanrı parçacığı” keşfedildi hala daha neyi arıyorlar dediklerini biliyoruz. Ama daha keşfedecek, öğrenecek ve anlayacak çok fazla şey var. Planck seviyesi denen quantum kütleçekiminin güçlenip bilinen quantum alan teorisini darmadağın ettiği ve evrenin dört büyük gücünün birleştiğinin tahmin edildiği 1.22 × 10^19 GeV’luk enerji seviyelerine inmek için hayal edebileceğimizden güçlü hızlandırıcılar gerekmektedir. Bu enerji seviyeleri öyle güçlüdür ki, gerçektenden bir kara delik oluşturabilirler. Ancak korkmayın, böyle bir hızlandırıcı inşa etmek için Dünya’da yeterince yer yok. Tahmini boyutları Güneş çapının 10 katı (14 milyon km) olacaktır.

DESYhizlandirici7

Almanya’daki dev parçacık hızlandırıcı; DESY. 1959 yılında inşa edilen bu hızlandırıcı, Cern ve Fermilab’dan sonra yeryüzündeki en güçlü hızlandırıcılardan biridir.

 

Bizler, insanoğlu asla uçamaz, uzaya çıkamaz, Ay’a gidemez diyen kişilerin sadece bir nesil sonrasındaki zaman diliminde yaşıyoruz. Bugün imkansız denen şeylerin yarın da imkansız kalacağının garantisi verilemez. Gelecek nesillerin yapamayacağının ya da başka insanlık harici olası uygarlıkların yapamayacağının kesinlikle hiç bir garantisi yok.

Bilimsel araştırmalara önem veren bütün uygarlıkların en büyük ortak noktasının, belki de parçacık fiziği olduğunu keşfedebiliriz bir gün. Evrenin yapı taşlarını keşfetmek isteyen bütün zekaların temel yapı taşlarını açığa çıkarıp gözlemleyebilecekleri hızlandırıcılar yapmaları gerekecektir. Bu sebeple evrenin derinliklerini incelerken bizimkilerden daha büyük ve güçlü parçacık hızlandırıcıların açığa çıkarabileceği cinsten yoğun enerjiler keşfedebiliriz. Planck seviyelerini araştıracak bir hızlandırıcının açığa çıkaracağı enerji, zaman zaman bir pulsar gibi parlamasına sebep olacaktır.

Hızlandırıcılarda Antimadde Üretmek

Parçacık hızlandırıcılarından Fermilab’daki Tevatron, Brookhaven’daki RHIC ve CERN’deki LHC gibi büyük ve güçlü olanlar, hatırı sayılır miktarda (araştırmalara yetecek kadar) antimadde üretebilmektedir. Her yıl Fermilab Tevatron hızlandırıcısı ile 15 nanogram, Alman DESY hızlandırıcısı 2 nanogram ve CERN 1 nanogram miktarlarda üretmektedir.

CERN

CERN, dünyanın en büyük ve kapsamlı yüksek enerji fiziği araştırma tessislerinden biridir. 6 adet hızlandırıcı ve yavaşlatıcıya ev sahipliği yapar. Birçok farklı deneyin yürütüldüğü CERN’deki antimadde deneylerinden bahsedelim.

CERN’ün ana parçalarından “Proton Synchroton” hızlandırıcısı, proton ışınlarını bir metal bloğa ateşler. Çarpışmalar o kadar şiddetlidir ki, yaklaşık her bir milyon çarpışmada yeni proton ve antiproton çiftleri açığa çıkar. Antiprotonlar ışık hızına yakın hızlarda her yöne doğru saçılırlar. 2002’den beri “Antiproton Decelerator” (Antiproton Yavaşlatıcısı) denen yavaşlatıcı, bir dakikadan kısa süre içinde antiprotonları manyetik alanlar ile yönlendirip, elektrik alanları ile yavaşlatarak (“cooling” denen bir işlem) bu antiprotonları ışığın 10% süratlerine kadar düşürür. Bu işlem sonunda deneylerden kullanıma hazır olan antiprotonlar ACE, ATRAP, ASACUSA, ALPHA ve AEGIS deneylerine yönlendirilirler.

acedeneyi

CERN’deki ACE deneylerinin yapıldığı alandan bir fotoğraf.

 

ACE (Antiproton Cell Experiment): Antiprotonların biyolojik etkilerinin araştırıldığı bu projede, Dünya çapında 10 enstitüden gelen bilim insanları antiprotonlar ile kanser tedavisi üzerinde araştırmalar yapıyorlar. Özellikle insan vücuduna büyük hasar veren kemoterapiye kıyasla çok daha az zarar veren ve daha etkili olan tedavi yöntemleri umut vaadediyor.

ATRAP (The Antihydrogen Trap): Bu deneyde hidrojen atomları ve antihidrojen atomları arasında karşılaştırmalı gözlemler yapılıyor. Bir antihidrojen atomu yapmak oldukça zorludur. ATRAP ekibi antiprotonları pozitronlara tabi tutarak ikinci bir “cooling” işlemi uyguluyorlar. Böylece antiprotonlar daha da yavaşlarken bazıları birer pozitron kapıp antihirdojen atomu haline geliyorlar.

ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons): Bu deneyde antiproton içeren helyum (antiprotonic helium), (atom çekirdeği çevresinde iki elektron yerine bir elektron ve bir antiproton dönen hibrid madde-antimadde atomlar, antiprotonların negatif elektrik yükü taşımasıyla mümkün olabiliyor) ve antihidrojen atomlarının spektroskopi yoluyla eşdeğer madde ile karşılaştırmaları yapılıyor. Bunun yanında madde ve antimaddenin etkileşimleri de gözlemlenip antiprotonların elektronlara ve atom çekirdeklerine olan etkilerinin de gözlemleri yapılıyor.

ALPHA: Diğer bir deney takımı olan ALPHA’da antihidrojen atomları sentezleyip bunlar üzerinde yoğunlaşıyor.

AEGIS (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy): Son olarak bu deneyde ise, Dünya’nın kütleçekiminin antihidrojen atomları üzerindeki etkisi araştırılıyor. Özellikle bu deneyden biliyoruz ki, antimadde ve normal maddenin kütleçekimsel bir farkı yok. Antimaddede kütleçekimine normal madde gibi maruz kalıyor.

UZAYIN DERİNLİKLERİNDEN ANTİMADDE GÖZLEMLERİ

Gözlemlenebilir evrendeki neredeyse bütün herşey, bizim için normal olan madde tarafından oluşmuştur. Ancak istisnai durumlar söz konusudur. Antimadde sanıldığı kadar nadir değildir. Hatta antimadde yoğunluğu olan bölgeler tespit edilmiştir.

galactic_center_fermi

Samanyolu’nun merkezindeki antimadde yoğunluğunun diğer bölgelere göre fazla olduğu alan.

 

Madde ve antimaddeyi oluşturan parçacıklar çarpıştıklarında gamma ışınları ve değişken birçok parçacık açığa çıkararak birbirlerini yok ederler. Bu gamma ışınlarını tespit ederek, madde ve antimaddenin temas ettiği bu nadir bölgeleri bulabiliyoruz.

“Antimadde Bulutu”

1970’den beri varlığını bildiğimiz galaksi merkezi yakınlarında bir “antimadde bulutu” mevcuttur. Ancak terim sizi yanıltmasın burası antimadde dolu bir bölge değildir, sadece eser miktardaki antimadde, evrenin geri kalanına kıyasla bu bölgede biraz daha fazladır. Neredeyse 10.000 ışık yılı boyutlarında bir alana yayılan bu “bulut”, elektronların pozitronlar ile çarpışması sonucu açığa çıkan gamma ışınları ile tespit edilmiştir. Bu bölge Güneşimizin 10.000 katı kadar bir enerji saçmaktadır.

ESA’nın Integral uydusu yakın zamanda bu antimaddenin kaynağını keşfetti. Galaksi merkezi yakınlarında ki X-ışını ikilileri (bir karadelik ya da nötron yıldızı ve bu süper kütleli cismin çevresinde dönerken madde kaybetmekte olan normal bir yıldız).

ANTİMADDE ENERJİSİ

Madde – Antimadde çarpışmaları, sahip olabileceğimiz en yoğun ve en saf enerjiyi üretmektedir doğru. Gelecekte bir gün uzay gemilerinde roket olarak kullanılabilir. Enerji santralleri ile şehirlerimizi ve kolonilerimizi aydınlatabilir, bu da doğru. Ancak böyle şeyler için ihtiyaç duyacağımız antimadde miktarını üretmekten henüz çok uzağız.

İnsanoğlunun bu güne kadar ürettiği antimadde, şu anda sadece bir ampulü bir saniyeliğine aydınlatmaya yetecek miktardadır. Yeterli miktarda antimaddeyi üretmenin pratik bir yöntemini bulursak; parçacık fiziğinden, yıldızlar arası görevlere kadar bir alanda yeni imkanlar sunabilir bize. Ancak ne yazık ki bugün ve yakın gelecekte böyle imkanların sadece hayalini kurmak durumundayız.

Berkan Alptekin

Fizik / Astrofizik

Negatif Enerji ve Negatif Kütleli Madde Nedir?

• İçerik Üreticisi:

Bu yazıyı yaklaşık 3 dakikada okuyabilirsiniz.

Negatif enerji ve negatif kütle, özellikle “warp sürüşü” veya “solucan deliği” gibi kavramların konuşulduğu ortamlarda sıklıkla dile getiriliyor.

Bu kavramların gerçekliği her ne kadar tartışmalı olsa ve bilim insanlarının büyük kısmı tarafından spekülasyon olarak görülse de, ne olup olmadıklarını açıklamak gerektiğini düşündük.

Negatif Kütleli Madde

Negatif kütleli madde denildiğinde çoğumuzun aklına Antimadde ya da Karanlık Madde geliyor. Ancak, bunlarla karıştırmayınız. Teorik fizikte, negatif kütle sahibi madde, 0 ağırlıktan daha düşük kütleye sahip, “hiçbir şeyden daha hafif” diye tabir edebileceğimiz ve kütle çekimi tarafından çekilmeyen tersine itilen spekülatif bir egzotik maddedir.

Bir ya da daha fazla enerji durumunu ihlal eder. Bir tartı üzerine koyarsanız tartıya ters basınç uygular ve -10 kg gibi bir sonuç görürsünüz. Eğer evrende negatif kütleli egzotik madde çeşitleri varsa, gezegenlerin, yıldızların hatta galaksilerin kütle çekimleri tarafından çok uzaklara itilmiş ve belki de hiçbir zaman ulaşamayacağımız galaksiler arası derin uzayda bulunuyor olabilirler.

Peki fizik kanunlarını ihlal ediyorsa nasıl gerçek olabilecekmiş gibi konuşabiliyoruz? Böyle bir şeyin bizim evrenimizde bulunmaması gerekmez mi? Katı haldeki negatif kütleli madde, ancak “mükemmel sıvı” diye tabir edilen bir halde negatif kütle sahibi maddede bulunabilir.

Kanada, Montreal Üniversitesi’ndeki kozmologlar Saoussen Mbarek ve Manu Paranjape mükemmel sıvı haldeki negatif kütle sahibi bir maddenin hiçbir enerji durumunu ihlal etmediğini açığa çıkardı. Gereken tek şey, bu maddeyi Big Bang esnasında üretmiş olabilecek bir mekanizma. Kısacası şu anda böyle bir maddenin gerçekliğini ne inkar edip imkansız diyebilecek ne de onaylayabilecek bir durumdayız.

Negatif enerji

Negatif enerji, adından da anlaşılacağı üzere eksi değerleri olan enerji seviyelerine denir. Karanlık Enerji ile karıştırmayınız. Tamamen kuramsal olan negatif kütleli madde, aksine negatif enerji çeşitli kuantum durumlarında stabil olmayan şekilde mümkün olabiliyor.

Bununla birlikte karakteristik olarak negatif enerjiye oldukça benzeyen ancak negatif enerji sayılmayan ve çok küçük ölçeklerde gerçekleşen Casimir etkisinden de bahsedelim. 1933’te Hendrik Casimir, Kuantum Teorisi’nin kanunlarını kullanarak garip bir öngörüde bulundu. Casimire göre; (alttaki resimde görülen) vakum içerisindeki iki adet paralel, yüksüz metal plaka birbirlerini itecekti.

Normalde yüksüz olan bu plakaların sabit durması gerekmekteydi ancak bu iki plaka arasındaki vakum boş değildi, gerçekliğe giriş, çıkış yapan sanal parçacıklar ile doluydu. Bu noktada sanal parçacıklarla ilgili yazımıza göz atmanız faydalı olacaktır. (Bkz. Belirsizlik ve Kuantum Dalgalanmaları)

Bu vakum, çok kısa ömürlü elektronların ve pozitronların ortaya çıkıp birbirlerini imha ederek yok olduğu kuantum aktiviteleri ile doludur. Normalde bu yoktan var olan ufak madde-antimadde olayları Enerjinin Korunumu Kanunu’nu ihlal ediyor gibi görünse de; belirsizlik ilkesi sebebiyle bu küçük patlamalar inanılmaz ölçüde kısa ömürlü olup, net enerjide değişikliğe sebep olmamaktadır. Böylece Casimir bu kısa ömürlü olayların plakalar arası vakumda bir basınç yaratacağını ve bu basıncın plakaları iteceğini keşfetti. Normalde bu plakalar birbirinden uzakken bu etki gerçekleşmezken, plakalar yaklaştırıldıkça aralarında bu enerji açığa çıkmaya başlar.

Bu enerji 1948’de laboratuvarda, Casimir’in öngördüğü gibi gözlemlendi. Bu enerjiyi ölçmek için inanılmaz hassas ve sanat eseri sayılabilecek ekipman gerektiğinden, 1996’da ilk hassas ölçüm yapıldığında bu etkiden kaynaklanan basıncın bir karıncanın ağırlığının 30 binde 1’i kadar olduğu bulundu. Tahmin ettiğiniz gibi uzay-zamanı bükmek için çok yeterli değil.

Negatif enerjiye başka bir örnek de, kara deliklerin buharlaşma sürecinde açığa çıkan ve Hawking radyasyonu mekanizması sırasında oluşan kısa ömürlü sanal parçacıklar verilebilir.

Hazırlayan: Berkan Alptekin

Okumaya devam et

Fizik / Astrofizik

Hologram Evren Kavramı Ne Anlama Geliyor?

• İçerik Üreticisi:

Bu yazıyı yaklaşık 6 dakikada okuyabilirsiniz.

Yaşadığımız evrenin aslında bir hologram olduğu söylemi son yıllarda fizik ile ilgili ortaya çıkan en büyük yanlış anlamalardan birine sebep olmakta. Bu yazıda konuda geçen kavramları ele alacağız, fizikçiler aslında ne demek istiyor onu açıklayacağız.

Hayır evrenimiz hologram değil. Bu sözcük evrenin olması gerektiği düşünülen bazı özelliklerini tanımlamak için kullan bir metafor. Bilimkurguda rastladığımız “bir simülasyonun içinde yaşama” eylemini sağlayan hologramla ilgisi yok. Bunu netleştirelim ve konunun bel kemiğini oluşturan Holografik İlke aslında ne demek ona bakalım.

Holografik İlke

Öncesinde başka bir konuya, entropiye bakmamız gerekiyor. Bir kara deliğin olay ufku sınır kabul edilir ve entropisi olay ufku yüzey alanının 4’e bölünmesiyle bulunur. Evrende, içinde madde barındıran, kara delik dışında bir bölge düşünün. Bu bölgenin kara deliğe benzer bir şekilde toplam entropisinin bir limiti var mıdır?

Biraz düşünecek olursak; eğer bu bölgenin içine madde eklemeye başlarsak bölgenin entropisini arttırırız. Fakat madde eklemeye devam ederken belli bir noktadan sonra o bölgede o kadar çok madde birikir ki, sonunda bu bir karadelik oluşturur.

Yani evrende bir bölgenin entropisini sonsuza kadar arttıramıyoruz. Limit var; çünkü entropi arttırmak için aynı hacime daha çok madde eklemek eninde sonunda kara delik oluşturuyor. Dolayısıyla evrende bir bölgede olabilecek en yüksek entropi nedir diye merak ediyorsak; o bölgenin yüzey alanının 4’e bölmemiz gerekiyor. (sanki kara deliğin entropisini ölçüyormuş gibi)

Entropiye aslında bir bilgi ölçeği de diyebiliriz. Evrendeki her madde, her parçacık, her dalga bilgi, yani enformasyon taşır. Bir yerde ne kadar çok madde varsa, o kadar çok bilgi vardır, dolayısıyla entropi o kadar yüksektir. Bu çıkarım bir fiziksel ilke, yani uymak zorunda kalınan bir kural. Holografik ilke adı verilen bu kural kısaca demekte ki; bir miktar hacmin içerisindeki bilgi miktarı, o hacme tanımlanan toplam bilgi miktarını geçemez.

Fizikte ilke/prensip adı altında geçen tanımlamalar, bir konuyla ilgili teorileri formülize etmek için kullanılır. Holografik ilke ise, Kuantum yerçekimi teorisini oluşturabilmek için kullanılması gereken bir ilkedir. Kuantum yerçekimi teorisi oluşturmak için işe koyulduysanız, bulduğunuz teori ya bu ilkeye uymak zorunda, ya da bu ilkeyi ihlal ediyorsa neden ihlal ettiğini çok iyi açıklayabilmek zorunda. Yoksa, teoriniz tutarsız olur.

Yapısı gereği deneysel olarak test edilebilecek tahminlere sahip olmayan bu gibi bilimsel ilkeler, belirli bilimsel teorileri oluşturmak için kullanılırlar yukarıda belirttiğimiz gibi. Dolayısıyla, prensibin tek başına varlığı, evrenin hologram olduğu veya evrenin bu prensibe gerçekten uyduğu anlamına gelmez.

Evrenin Holografik ilkeye uyup uymadığı ifadesi ise test edilmesi gereken bir önermedir. Fakat bunun yapılabilmesi için önce işe yarar, çalışan bir kuantum yerçekimi teorisi oluşturmak gerekiyor.

Dolayısıyla, eğer biri size evrenin hologram olduğundan bahsediyorsa, o kişinin aslında neyden bahsettiği hakkında bir fikri olmadığı söylenebilir. Medyada son zamanlarda çokça ortaya çıkmaya başlayan evrenin hologram olduğu kanıtlandı benzeri haberler de benzer bir şekilde yanıltıcı ifadelerle son zamanlarda yapılan çalışmaları anlatmaya çalışıyor.

The Matrix, hologram kavramının ötesinde, dijital sanal bir evren tasvir eder.

Bu haberlerin yapıldığı makaleler aslında biri AdS diğer CFT adında iki gerçek olmayan teorinin bağlantısını ifade eden AdS/CFT konjektürü adlı matematiksel tanımlamaya dayanmakta ve bu, yaşadığımız evren ile ile ilgili bir şey de söylememekte.

Konuyu genel hatlarıyla anlayabilmeniz için bu iki karışık matematiksel teorinin detaylarını bilmeniz gerekmiyor merak etmeyin. Sadece uzayı farklı şekilde tanımlayan iki farklı matematiksel modelin olduğunu ve bu ikisinin birbirleriyle ilişkisinin üzerine çalışıldığını söylüyorum. Aşağıda iki teoriye de kısaca değineceğim.

O zaman neden bu AdS/CFT’ye ihtiyaç duyuluyor?

Yukarıda anlattığımız holografik prensip sadece sözlerden oluşan bir şey ve sözler keskinlik konusunda iyi değillerdir, hesaplanamazlar. Fizikçiler düşünceleri matematiksel denklemler halinde yazmayı severler, böylece bahsedilen şeyin niteliği ve niceliği analiz edilebilir olur.

AdS/CFT konjektürü de bu şekilde holografik prensip’e dayanan matematiksel bir modeldir. Fakat bu matematiksel model gerçek değil yani bizim evrenimizi tanımlamıyor. Peki madem gerçek değil, o zaman neden üzerinde çalışıyor?

Fizikte “Oyuncak Teori” olarak da bilinen bir kavram bu. Gerçek olmadığı bilindiği halde bu gibi teorilerin üzerinde çalışılmasının iki nedeni var.

1 – Basit bir model olduğu için daha karmaşık ve gerçek olan modellerde yapılamayan hesaplamaları yapmaya olanak sağlamaları.

2 – Gerçekçi bir modelimizin olmadığı bir alanda, elimizdeki verilerle ne yapabildiğimize bakabilmek.

Peki o zaman AdS/CFT konjektürü bize ne anlatıyor? Teknik detayına girmediğimizde bunun sicim teorisinde tanımlanan D3-zarıyla uğraştığını söyleyebiliriz.

Bu zara iki farklı perspektiften bakılıyor. Bir perspektiften bakıldığında 5 boyutta (kuantum) yerçekimi teorisi gibi duruyor, buna AdS tarafı deniliyor. Diğer perspektiften yani CFT tarafından bakıldığında ise yerçekiminin dahil olmadığı 4 boyutlu teori gibi duruyor.

adc67216f99baacc75f599e955427160

Fakat zar aynı zar olduğu için, hangi perspektiften bakarsak bakalım aynı şekilde davranması gerekmekte. Yani aynı hesaplamaları 5 boyutlu teoride de 4 boyutlu teoride de yaptığımızda aynı sonuçları almalıyız.

Bir şeyin bu şekilde iki farklı tanımının olması, yani modelin ikili yapısı, hesaplamalar yaparken oldukça kullanışlı, faydalı oluyor. Hesaplanmak istenen şey eğer yerçekiminin dahil olduğu AdS tarafında hesaplanması çok zor ise, yerçekimsiz olan CFT teorisinde hesaplanarak bulunabiliyor.

AdS/CFT modeline konjektür yani varsayım sıfatını vermemin nedeni daha tam kanıtlanamamış olması. Fakat bu konjektürün doğru olabileceğine dair birçok veri var. Bunlar yukarıda anlattığımız gibi hesaplamaların iki farklı perpektiften de bakılarak yapılıp karşılaştırılmasıyla ve sonuçların tutmasıyla olmakta. Fakat sonuçların her zaman tutarlı olacağı henüz söylenememekte.

Bilim sitelerinde “fizikçiler evrenin hologram olduğuna dair kanıt buldular” diye haberlere rastladığınız zaman, o habere konu olan makalenin aslında demek istediği şey AdS/CFT konjektüründe tutarlı olan bir hesaplama daha bulunduğu. Fakat tekrar edelim, bu bizim evrenimizle ilgili bir şey söylememekte, sadece gerçek olmayan model hakkında daha yeni bir bilgi vermekte.

Modelin gerçek olmamasının nedenlerine gelecek olursak:

  • Model sırtını sicim teorisine dayamakta ve aslında sicim teorisi de “Oyuncak Teori” sınıfına girmekte. Sicim teorisi evrenimizi ile ilgili gerçek bir tanımlama yapmamakta. Sanal bir evren tanımı yapmakta ve bu evren bazı açılardan bizim evrenimiz ile benzerlikler taşıyor fakat bazı açılardan oldukça farklı.

  • Yerçekiminin de dahil olduğu perspektife AdS deniliyor çünkü bu evreni “Anti de Sitter” adında özel bir geometri ile tanımlıyor. Evrenimiz bu geometriye sahip değil. Hatta bunun tam tersi olan “de Sitter” ile tanımlanmış durumda. Dolayısıyla AdS bizim evrenimize bağlı bir tanım yapmıyor.

  • Yerçekiminin dahil olmadığı perspektif olan CFT ise evreni Conformal Simetri adında özel bir geometri ile tanımlıyor. Bu nedenle adı Conformal Field Theory/Conformal Alan Teorisi. Fakat evrenimiz hem conformal simetriye sahip değil hem de yerçekimi var. Dolayısıyla CFT de bizim evrenimize bağlı bir tanım yapmamakta.

Sonuç olarak; AdS/CFT konjektürü sanal bir evren modeli tanımlıyor ve bu tanımladığı evren bizim evrenimiz değil. Holografik ilkenin matematiksel bir karşılığı. Oldukça önemli olmasına ve teorik fizikte bir çok uygulama alanı olmasına rağmen bizim evrenimizle bir ilişkisi yok.

Yine de Holografik ilenin gerçek olmayan matematiksel bir modeli olan AdS/CFT çalışmaları, ileride bizim evrenimize de uygulanabilecek gerçek bir model için zemin hazırlamakta ve serimizin ilk yarısında belirttiğimiz gibi işleyen bir kuantum yerçekimi teorisi ortaya çıktıktan sonra holografik prensibin empirik olarak sınanmasının da önü açılacak.

Hazırlayan: Taylan Kasar

Konuyla ilgili diğer yazılarımız:
Evren bir simülasyon mu? – 1
Evren bir simulasyon mu? – 2

Okumaya devam et

Fizik / Astrofizik

Yıldızların Rengi ve Sıcaklığı Arasındaki İlişki

• İçerik Üreticisi:

Bu yazıyı yaklaşık 3 dakikada okuyabilirsiniz.

Yıldızların rengi ve sıcaklığı arasındaki ilişki bazen kafa karıştırıcı olabiliyor. Astronomi sitelerinde vakit geçirmeyi seven pek çoğumuz şu bilgi notuyla karşılaşmışızdır; ”Zannedilenin tersine mavi yıldızlar, kırmızılardan çok daha sıcaktır.” Peki ama neden?

Günlük yaşamımızdan da bildiğimiz üzere, ısındığı için ışık yayan cisimlerin yaydıkları ışığın rengi, cismin sıcaklığıyla ilgilidir (fluoresan ve led türü soğuk ışık kaynakları şu anki konumuz değil). Yıldızlar dahil olmak üzere, ısısı nedeniyle ışık yayan tüm cisimler aslında kara cisim ışıması yaparlar.

Örneğin kırmızımsı – turuncu renkte gördüğümüz elektrikli sobanın çubuklarının sıcaklığı 2.000 santigrat derece kadardır. Evlerimizde kullandığımız Edison tipi bir akkor ampulün içindeki flaman sarımsı ışık yayar. Bu flamanın sıcaklığıysa yaklaşık 3.000 derece civarındadır.

hand-holding-lit-lightbulb

Eğer bir cismi daha fazla ısıtabilirsek renginin giderek maviye döndüğünü görebiliriz. Bir odunu yaktığımızda, odunun bitişiğinde yanmakta olan ateş mavi renktedir. Yanan ateş, kaynağından uzaklaştıkça, alevi oluşturan partiküller soğuduğu için maviden kırmızıya doğru kayar. Bunu bir çakmak veya kibrit yaktığımızda da gözleyebiliriz.

Örneğin bir kibrit yanarken ateş, kaynağına en yakınken mavi renktedir. Fakat, kaynağından uzaklaşıp havadaki görece düşük sıcaklıkla karşılaştıkça yavaş yavaş sıcaklığını kaybeder, mavi renkten beyaza, beyazdan sarıya, sarı renkten de kırmızıya döner ve gözden kaybolur.

Tabi bu arada şunu belirtmek lazım; Dünya üzerinde gördüğümüz alevlerin rengini sadece sıcaklık belirlemez. Alevi oluşturan kimyasal madde de renge etki eder. Kibrit ve çakmak örneğinde mavi alevli kısım aslında 1.000 santigrat dereceden düşük sıcaklıkta olmasına rağmen mavidir, çünkü alevi oluşturan kimyasallar bu rengi yayarlar. Ancak, bunu göz ardı edersek, “öğretici örnekleme” açısından uygundur.

1010419_391319711014514_490058086_n

Türlerine göre yıldızlarının evrende bulunma oranları. Her 1 adet O-B sınıfı yıldıza karşı diğer yıldız türlerinden kaç tane olduğu. Şu makalemize de göz atabilirsiniz.

 

İşte yıldızlarda da durum buna çok benzerdir. Elbette yıldızlarda alev yoktur. Sıcaklık, yıldızın çekirdeğindeki nükleer reaksiyon sonucu alevsiz olarak oluşur. Daha başka bir deyişle, yıldızları ısıtan şey ateş değildir. Fakat bizler Dünya üzerinde sıcaklığın sadece “kimyasal bir reaksiyon olan” ateş ile oluştuğunu gözlemlediğimiz için, yıldızları da birer alev topu olarak düşünürüz. Bu, içine düştüğümüz bir yanılgıdır.

Sıcak yıldızların ışığı mavi, soğuk yıldızlarınkiyse kırmızıdır. Yıldızın rengini, çekirdek bölgesindeki nükleer reaksiyonun miktarı belirler. Büyük ve sıcak yıldızlarda bu reaksiyon çok fazla olduğu için yıldız da orantılı olarak o kadar fazla ısınır ve rengi de bununla bağlantılı olarak kırmızıdan maviye doğru (sırasıyla kırmızı, sarı, beyaz, mavi) değişir.

Burada kırmızı yıldızlara soğuk demekteyiz fakat soğuk değildirler, bu “göreli” bir tanımlamadır. Mavi renkli yıldızlar 30.000 santigrat dereceden fazla sıcak olabilirken, kırmızı renkli yıldızlar 2.500 – 3.000 derece kadar sıcaktırlar. Haliyle 30.000 derecelik bir sıcaklığa karşı 2.500 derece, 12 kat soğuktur.

Yıldızların renkleriyle sıcaklıklarının ilişkisini gerçek anlamda anlayabilmek ve yıldız asrofiziği açısından ele alabilmek için; şu üç yazımızı muhakkak okumalısınız:

  1. Tayf
  2. Tayf Türleri
  3. Kara Cisim Işıması

Hazırlayan: Kemal Cihat Toprakçı
Bu yazımız, sitemizde ilk olarak 8 Mart 2015 tarihinde yayınlanmış, güncellenerek tekrar yayına sunulmuştur.

Okumaya devam et

Fizik / Astrofizik

Güneş Sistemi’nin Oluşumu: Modern Laplace Teorisi

• İçerik Üreticisi:

Bu yazıyı yaklaşık 10 dakikada okuyabilirsiniz.

Modern Laplace Teorisi günümüzde Güneş Sistemi’nin oluşumunu en iyi anlatan ve en kabul görmüş teoridir. Ancak, Güneş Sistemi’nin oluşumunu açıklamaya çalışan teorileri geçmişten günümüze doğru anlatmaya çalıştığımız yazı dizimizi eğer okumadıysanız, öncelikle birinci ve ikinci bölümlerini okumanızı öneririz.

Laplace’ın ortaya attığı orjinal teorideki açısal momentum sorunu Roche’nin denemesinden başlayarak 100 yılı aşkın süre boyunca çözülmeye çalışılmış, bir çok farklı model denenmiştir. (Açısal momentumun ne olduğu ve nasıl bir sorun yarattığı yazı dizimizin önceki bölümlerinde anlatılmıştı.)

Bu uğraşlar sayesinde Güneş Sistemi’nin oluşum sürecindeki farklı olaylara zaman içinde açıklıklar getirilmiş, 1974’te astronom Andrew Prentice tarafından Modern Laplace Teorisi adı altında daha bütünlüklü bir teori oluşturulmuştur. Teori, kendisinden birkaç sene önce ortaya konulan Güneş Nebulası Teorisi’nin bir devamı gibi durmasının yanında gezegen oluşumlarını ele alışı Protoplanet Teorisi ile benzerlik taşır.

Güneş Sistemimizi oluşturan ana nebulanın çapının 20 parsek (1 parsek = 3.26 ışık yılı, yani 31 trilyon km) olduğu düşünülmektedir. Güneş sistemi bu nebulanın sadece 0.01-0.1 parsek çapındaki bir parçasının çökmeye, yoğunlaşmaya başlamasıyla meydana gelmiştir.

orion_nebula_complex_wide

Fotoğrafta görülen Orion bulutsusu 3.5 parsek (1 parsek = 3.26 ışık yılı) büyüklüğündedir ve 700 civarı yıldıza ev sahipliği yapmaktadır.

 

Güneş öncesi nebulası adını verdiğimiz bu parçada yoğunlaşmaya neden olan, daha doğrusu katalizör görevi gören şeyin süpernovalardan yayılan şok dalgaları olabileceği tahmin edilmiştir. Bu şok dalgaları sayesinde ortamdaki gaz ve toz kümelenmeye başlar ve kütle çekimi etkisiyle yıldız sistemleri meydana gelir. Süpernovalar kütlesi oldukça yüksek olan ve dolayısıyla kısa ömürlü olan yıldızların ömürlerinin sonuna gelince infilak etmeleri sonucu etrafa şok dalgasıyla birlikte içlerindeki materyali de saçarlar.

Demir elementinin kararsız izotoplarından olan 60Fe ve benzer şekilde aluminyum izotopu 26Al, sadece süpernova patlamalarıyla ortaya çıkan ürünlerdendir ve Dünya’ya düşmüş meteoritlerde bu izotoplar bulunmuştur. 60Fe daha eser miktarda bulunduğu için Güneş Sistemi’ni oluşturan etkiyi yaratacak patlamadan çok daha önceki çevrimlerden arta kaldığı düşünülmektedir fakat 26Al miktarı, etrafta 20 Güneş kütlesinden daha büyük bir yıldızın Güneş Sistemi oluşmadan önce patladığını ve sistemimizi oluşturacak gaz ve toza etki ettiğini doğrulamakta.

Supernova’dan gelen şok dalgasının etkisiyle kümelenmeye başlayan bulutsu kütle çekimsel olarak baskın hale geldiğinde çökmeye başlar. Merkezde yoğun bir çekirdek oluştuktan sonra kütle çekimsel alan büyüyüp etraftaki gazları da çekmeye başlar ve daha da büyür. Akresyon adı da verilen bu süreçle etraftaki gazlar sistemin içine dahil edilir ve sistem dışarıdan bağımsız bir hale gelir. Bu andan itibaren içsel süreçlerle evrilme devam eder.

Merkezdeki çekirdek, etrafından madde aldıkça daha az hacme sıkışan bulutsu açısal momentumunu korumak için çok daha hızlı bir şekilde dönmeye başlar. (bir patencinin kendi etrafında dönmeye başladığı sırada kollarını ve bacaklarını bir araya topladığında hızlanması da aynı nedenden dolayıdır.)

Sisteme yandan baktığımız zaman, nebulanın yukarısından ve aşağısından çekilen parçacıkların çarpışmaları ve dikey enerjilerini bu şekilde yok etmeleri nedeniyle sistem yüksekliğini kaybedip genişleyerek bir disk şeklini almaya başlar. Gezegenlerin Güneş ile neredeyse aynı düzlemde yer almalarının nedeni budur.

starbirthdisc477512

Bu ilustrasyonda görülen başlangıç diski ortalama 100 AU genişliktedir. Merkezinde proto yıldız olan bu diskte açısal momentum ve sıcaklık nedeniyle gazlar kenarlara doğru gittikçe genişleyen bir biçimde ilerlerken daha ağır maddeler kütle çekimi etkisiyle içeriye doğru sürüklenir. Modern Laplace Teorisi’ne göre nebula ortalama 100,000 yıl içinde disk şeklini almıştır.

 

Disk küçülmeye devam ederken 10 milyon yıl içinde gaz yapılı dış gezegenler oluşur. Kayaç gezegenlerin oluşması 10-100 milyon yıl içinde gerçekleşir. 50 Milyon yıl içinde ise merkezdeki T-Tauri benzeri proto yıldızın (ön yıldız) kütlesinin yarattığı basınç ve sıcaklık Hidrojen füzyonu başlatacak seviyeye ulaşır, Güneş doğar.

Maddenin nasıl dağıldığına bakacak olursak; bu disk oluşumu sırasında Güneş’e 4 AU (1 AU “astronomik birim” = 150 milyon km) kadar yakın konumlarda hafif gazlar sıcaklık ve basınç dolayısıyla kendilerine yer bulamazken yüksek sıcaklıklarda yoğunlaşma özelliğine sahip olan Kalsiyum ve Alüminyum açısından zengin oluşumlar Güneş’e yakın konumlarda toplanmaya başlarlar.

Kalsiyum-Alüminyum oluşumlarının biraz daha ötesinde ise milimetre ve daha ufak ölçeklerde Krondül adı verilen ve serbestçe dolaşan erimiş damlalar olan silikat küreleri oluşur. En yaygın meteorit tipi olan Krondrit’lerde yani kaya meteoritlerinde bulunurlar.

Yoğunlaşan bu gibi moleküllerin ve demir, nikel alüminyum gibi metal elementlerinin birleşmesiyle oluşan taş ve kaya parçacıkları Güneş Sistemi’nin iç kesimlerinde, çapı 10km’ye varan, Planetesimal‘ler adını verdiğimiz yapıları meydana getirmeye başlarlar ve disk halkalı bir yapıya dönüşme sürecine girer.

Allende_meteorite

Fotoğrafta Allende meteoritinden bir kesit görülmekte. Meteoritin üstündeki beyaz lekeler Güneş sisteminin ilk zamanlarında oluşmuş olan Kalsiyum-Alüminyum’lardır.

 

Gaz ve tozdan oluşan bu diskin iç kısımlarında su molekülleri sıcaklıktan dolayı kristalleşip donamaz. Dış kısımlara doğru gidildikçe, buz hattının ötesinde su molekülleri donmaya başlar. İç kısımlardaki metaller ve silikatlara göre çok daha yüksek miktarda bulunan bu moleküller, donup çarpışmaya ve daha büyük yapıları; buz kayaları oluşturmaya başlarlar.

Yeterince büyüyüp gezegenimsiler halini aldıklarında hızlı bir şekilde birkaç milyon yıldır var olan gaz diskinin en büyük parçasını oluşturan hidrojen ve helyum ile beslenmeye başlarlar. 3 milyon yıl içinde Dünya’nın kütlesinin 4 katı kadar kütle kazanabilirler ve bu gezegenimsiler 10 milyon yıl içinde gaz devlerini oluştururlar.

Bu sebeple güneş sistemimizdeki dış gezegenler, iç gezegenlere oranla çok daha hızlı bir şekilde oluşmuştur. Jüpiter‘in buz hattının hemen ötesinde olması bir rastantı değildir. Buz hattına geçince yoğunlaşmaya başlayan materyaller bir bariyer görevi görerek ortalama 5 AU uzaklıkta birikmeye neden olmuş ve gezegenimsinin oluşum sürecini hızlandırmıştır.

Satürn ise Jüpiter‘den birkaç milyon yıl sonra oluşumunu tamamlamıştır, Jüpiter’den daha düşük kütleli olmasının nedeni etraftaki hidrojen ve helyum gazlarının büyük bir kısmının daha önce Jüpiter tarafından ele geçirilmesinden kaynaklanmaktadır.

olusumdiski54454545

Uranüs ve Neptün‘ün ise günümüzde bulundukları bölgede oluşma ihtimali düşük görülmekte. Materyal dağılımına bakıldığı zaman bu kadar fazla kütleye sahip olmaları oldukça zor görünmesinin yanında, oluşmaları için geçen süre de birkaç yüz milyon yıla yayılıyor.

Bu nedenle Uranüs ve Neptün’ün Güneş’e daha yakın bir konumda, Jüpiter ve Satürn civarlarında gezegen çekirdeklerini oluşturduklarını ve daha sonra yörüngelerinin değiştiğine dair geliştirilmekte olan yörünge göçü modellerinden Nice 2 Modeli günümüzde çalışılmakta. Bu teoriye göre, buz devleri ilk evrelerinde rezonansa (Satürn ve Jüpiter’in kütle çekimsel itimine) kapılmış durumdalar ve oluşumlarından milyonlarca yıl kadar sonra günümüzdeki yörüngelerine yerleşiyorlar.

Dış gezegenlerin yaşadıkları rezonanslar ve yörünge göçleri, Güneş sisteminin daha dış bölgelerindeki yapıların oluşumunda da pay sahibiler.

Neptün’ün ötesindeki Kuiper kuşağı, saçılma diski ve Oort Bulutu buzul yapıya sahip olan kuyruklu yıldızların kaynağını oluşturmaktalar. Güneş’ten oldukça uzakta olan bu bölgelerde yeterli kütle olmadığı için madde akresyona (kümelenmeye) uğrayamaz ve gezegenler oluşturamaz.

olusumdiski454784212

Çizimde yeşil yörünge Jupiter’i, turuncu yörünge Satürn’ü, turkuaz yörünge Uranüs’ü ve koyu mavi yörünge Neptün’ü temsil etmekte.

 

Kuiper kuşağı günümüzde 30-55AU uzaklıkları arasında olsa da Güneş sisteminin ilk zamanlarında daha yakın konumdaydı ve yoğunluğu daha fazlaydı. Dış kısımları 30AU’ya kadar uzanırken içeride günümüzde Neptün ve Uranüs’ün bulunduğu yörüngeleri kapsamaktaydı.

Modele göre Jüpiter ve Satürn’ün, yörüngelerini temizlerken ilk 500 milyon yıl içinde 2:1 oranında rezonansa girmeleri (yani Satürn Güneş çevresinde 2 tam tur atarken Jüpiter’in 1 tam tur atması), çevrelerinde kütle çekimsel bir itki etkisi oluşturuyor ve bu nedenle önceden Güneş’e daha yakın olan Neptün, Uranüs’ün ötesine doğru sürükleniyor. Bu sırada eski Kuiper Kuşağı kalıntılarını da süpürüyor.

Buz devlerinin yörüngelerinin ötelenmesiyle birlikte daha dışarıdaki ufak buz kayaları da onların çekim etkisiyle birlikte iç bölgelere doğru yöneliyorlar. Jüpiter’in etkisiyle çok daha eliptik ve parabolik yörüngelere girmeye başlayan bu cisimlerin bir kısmı sistemin dışına doğru yol almaya başlıyor ve Oort Bulutu’nun da bu şekilde olduştuğu tahmin ediliyor.

oort-cloud457821

Buz hattından daha yakınlarda ise diskteki katı materyalleri bünyesine katan gezegenimsiler, biraz daha karmaşık bir oluşum süreci geçirirler. Güneş sisteminin iç kesimindeki silikat ve metal ağırlıklı cisimler çarpışmalar ve birleşmeler sonucu 1km civarı boyutlara ulaştıklarında, yakın çevrelerini kütleçekimsel olarak etkileyebilen planetesimal’ler dediğimiz ufak parçaları; gezegenimsi parçalarını oluştururlar.

Bir çok planetesimal çarpışmalar sonucu dağılır fakat aralarından bazıları çekimlerine kapılan ve türbülanslar sonucu bünyesine dahil ettiği kaya parçalarıyla sıkışmaya ve büyümeye devam eder. Böylelikle boyutları birkaç yüz km’yi bulan gezegenimsileri oluşur.

Çarpışmaya ve birleşmeye süreçleriyle Güneş Sistemi’nin erken dönemlerinde 50-100 civarı Ay/Mars büyüklüğünde gezegenimsi oluştuğu tahmin edilmektedir. 100 milyon yıl süresince bu gezegenimsiler kütleçekimsel olarak birbirlerini etkiler, çarpışmaya ve büyümeye devam ederler ve sonucunda 4 adet iç gezegeni (Merkür, Venüs, Dünya, Mars) oluştururlar.

theia-smashes-earth

Bu dönemin sonlarına doğru ortalama büyüklüğü Mars kadar olan gezegenimsilerden birinin Dünya’ya çarpması sonucu ise uydumuz Ay oluşmuştur.

İlk 10 milyon yılda dış gezegenler, 100 milyon yılda ise iç gezegenler oluşmakta. Fakat hem iç gezegenlerin oluşum sürecinden arta kalan planetesimaller, hem de dış gezegenlerin yörünge değişimleri nedeniyle Kuiper Kuşağı ve saçılım diskine etki etmeleri nedeniyle; Güneş Sistemi’nde 4.1 ila 3.8 milyon yıl öncesine uzanan, iç gezegenlere yönelik yüksek sayıda meteorit çarpışmasının yaşandığı düşünülen Ağır Bombardıman Dönemi adı verilen bir zaman aralığı vardır.

Ay’daki en büyük kraterler incelendiğinde tarihlenmeleri bu zaman aralığına denk gelir. Dünya’daki suyun da bir kısmı bu dönemde çarpan buz meteoritlerinden gelmektedir.

ay45478211255

Geç Ağır Bombardıman dönemi sonlarında artakalan planetesimal’lerinin bazıları gezegenlerin yörüngeleri tarafından yakalanıp uyduları meydana getirir. Mars’ın uyduları ve Jüpiter gibi devlerin yüksek deklinasyona sahip uyduları bu şekilde yakalanmış cisimlerdir.

Asteroit kuşağı da iç gezegenlerin oluşum döneminde gezegenimsilerin olduğu bir bölgedir. Fakat dev gezegenlerin yörünge değişiklikleri döneminden kalma parçalar pek yoktur. Daha çok Ağır Bombardıman Dönemi sonrası arta kalan gezegenimsiler ve asteroidlerden oluşur. Jüpiter’in çekim gücü nedeniyle yörünge hızları, enerjileri yükseldiği için çarpışma şiddetleri birleşmelerini sağlamaktan çok parçalanmalarını sağlayacak düzeyde olmaktadır.

Hazırlayan: Taylan Kasar

Bu yazımız, sitemizde ilk olarak 1 Nisan 2015 tarihinde yayınlanmış, gözden geçirip hatalardan arındırılarak tekrar yayına sunulmuştur. 

Okumaya devam et

Çok Okunanlar