Connect with us

Kozmik Anafor Arşivi

Astronomik Bir Dokunuş: Nasıl Anlatmalı?

Bu yazıyı yaklaşık 7 dakikada okuyabilirsiniz.

Bir gök cismi yahut bir gök olayı değil de, astronomiyle uzaktan yakından ilgili olmayan bir çocuğa, bir yetişkine nasıl astronomik bir yaklaşım yapabiliriz, onlara astronomik olarak nasıl dokunabiliriz, ‘astronomi le tanıştırıp hayallerindeki uzayı nasıl şekillendirebiliriz?’ bunu ele almak istedik.

Ülkemizde astronomiye verilen değerin istediğimiz kıvama gelmesi için ‘kırk fırın ekmek yemek gerek’ tabiri oldukça uygun kaçar elbette. Bunu hep söylüyoruz, hep yakınıyoruz ama bizlerin de bu konuda üzerine düşen görev büyük.

Bu sitede yapılan paylaşımları takip edelerin arasında, belki mükemmel, belki amatör astronomlar var. Bunların yanı sıra mühendisler, ev hanımları, tarihçiler, çocuklar ve evrene, gökyüzüne bir şekilde merak salmış olanlar, arama butonlarının en başına astronomi sitelerini yerleştirenler, sadece rengarenk ihtişamı ile tebessüm eden bulutsu fotoğraflarından dolayı astronomiye hayran olanlar var. Herkesin bir tanışma hikayesi vardır elbette bilimlerin anası ile.

Yıldız tozundan, deniz yıldızına ilerleyen yaşam serüveni, yeryüzünde sadece hayatı değil, kökeninin yıldız tozları olduğunu anlayabilecek zekayı da var etmiştir…

 

Bizler gök cisimlerini, gök olaylarını biliyoruz, öğrenmeye çalışıyoruz. Hep daha yeni ve anlaşılır formlarda elde etmeye çalışıyoruz bilgiyi. Gelişmelerden bir şekilde haberdar olabiliyoruz. Belki de, evrenin derinliklerini algılarımıza yerleştirmeye çalıştığımız her zaman diliminde, x galaksisinin y gezegeninde beş kulaklı, üç gözlü canlıların olup olmadığını düşünmeden edemiyoruz. Israrla sinyal bekliyoruz onlardan. Bizler tüm bunları akledebilirken, bir yıldızın ömrünü hesaplayıp astral seyahat hayalleri kurarken Güneş’in bir yıldız olduğundan habersiz olan, yer çekimini tarif edemeyen, Dünya’nın içinde yaşadığını iddia edenler var.

Neyse ki en azından ‘Dünya tepsi şeklinde’ söylemi ile karşılaşmamanın verdiği huzur ile yazmaya devam edebilirim. Şaka bir yana, bu durum size gülünç gelebilir fakat bu yazının ‘halk düzeyine indirgenmiş astronomik bilgilerin sokratik sorgulama yöntemi eşliğinde verilmesi sonucunda’  uzun deneyimler akabinde yazılan bir yazı olduğunu unutmayalım. İnsanların bu tutumunu elbette küçümsemiyoruz. Tabi ki bilmemelerinin altında yatan etkenler var ve tartışmaya oldukça açık. Biz bu kısım ile ilgilenmeden, Türkiye’nin uzay programları konusunda son birkaç yıl içinde eskiye göre hareketlendiğini de göz ardı etmeyerek, astronomide bir düzey ve büyük bir kitle elde edebilmek adına ‘herkes’ Astronomi ile tanışsın diyoruz. Telaş etmeyiniz, toplu yerlere gidin, seminerler verin demeyeceğiz.

Astronomik

Amacımız, gençlerin, çocukların bir dolunay akşamı Ay’a baktıklarında birbirlerine edebilecekleri tek kelamın ‘’Ay’a baktım seni gördüm, sana baktım ayı gördüm’’ esprisinden öte geçmesini sağlamak olacak. Ay’ın Dünya’nın uydusu olduğunu da düşünebilmeleri, onu diğer gezegenlerin uydularıyla kıyaslayabilmeleri, neden Ay’a çok önceden gidilmiş tartışmasını yapabilmeleri.

Ne yapacağız? Onlara sorarak düşünmelerini sağlayacağız. Bu hususta ilk hedefimiz çocuklar, daha sonra hiç ilgisiz yetişkinler olmalı. Onlar tanıyıp tanımamanız da önemli değil. Yoldan birisini çevirip de sorabilirsiniz, otobüste karşı koltukta annesinin kucağında oturan bir çocuğa da sorabilirsiniz. Dedenize bile sorabilirsiniz. Çok keyifli.

Onların astronomi ile tanıştırabilmemiz için önce gözle görülebilir gök cisimlerini öğrenebilmeleri, sonra da bulutlardan ileri götüremedikleri evren anlayışlarını yavaş yavaş genişletebilmeleri gerekir. Bu durumda astronomiyi hiç bilmeyen birine ‘Samanyolu galaksisinde kaç yıldız var?’ diye balıklama dalarsanız, hayalinde s3, s4 cep telefonundan, bir türkü isminden ya da geçmişteki bir TV kanalından başka bir şey belirmeyecektir.

Bu konuda ele başımız hep Güneş olmalı. Güneş onlar için uzaktan görünen parlak sarı bir toptan ibaret çünkü. Şu ana kadar yöneltilen basit sorulardan ve yüzde doksanı olumsuz olan cevapların bazılarından bahsedeceğim. Mesela:

  • Güneş nedir? Bir yıldız mı, gezegen mi?

Yıldız cevabını alacaksınız elbette. Fakat gezegen cevabını da alacaksınız.

  • Güneş bir yıldız olduğuna göre bizim geceleri gökyüzünde gördüğümüz yıldızlardan farkı ne o zaman?

En büyük yıldız, en sıcak yıldız çünkü diğer yıldızlar soğuk, Güneş gündüzleri çıkıyor diğer yıldızlar geceleri çıkıyor, Güneş yuvarlak küre şeklinde ama diğer yıldızların köşeleri üçgen üçgen, sivri sivri… gibi cevaplar alacaksınız.

  • Peki, Güneş bir yıldız, Dünya bir gezegen değil mi? O halde bir yıldızla bir gezegen arasında ne fark var acaba?

Yıldızlarda yaşanmaz, gezegenlerde yaşanır cevabını alacaksınız.

  • Yıldızlar mı büyük olur gezegenler mi? Güneş mi büyük Dünya mı?

‘Güneş bir top kadar görünüyor, Dünya daha büyük’ cevabını alma şansınız yok değil.

  • Güneş bizi nasıl ısıtıyor? Neyden oluşuyor Güneş’in maddesi?

‘Ateş var, ateşle ısıtıyor’ büyük küçük fark etmez kaçınılmaz yanıtlardan biri. Daha sonra çocukların verdiği cevaplar arasında soba var, kömür var, duman var vs…

  • Güneş’ten büyük yıldızlar da var mı?

Söz konusu hiç astronomi bilmeyen bir kitle olduğu için çoğunlukla Güneş’in en büyük yıldız olduğunu düşünürler.

Buradan sonra Güneş Sistemi ve Dünya’ya yönelik sorularla devam edeceksiniz. Bazı soruları okuduğunuzda dalga mı geçiyorsun sen diyebilirsin fakat daha önce hayatında bu soruları hiç ama hiç düşünmeyen insanlar olduğunu unutmayalım.

  • Güneş Sistemi’ne neden sistem diyoruz?
  • Güneş Sistemi’nde Dünya ile birlikte kaç gezegen var?
  • Peki bu gezegenlerin bazılarını da olsa geceleri çıplak gözümüzle görebilir miyiz?
  • Gezegenler neden düşmüyorlar?
  • Dünya’nın içinde mi yaşıyoruz yüzeyinde mi?
  • Dünya’nın yüzeyinde yaşıyorsak insanlar, evler, arabalar, tüm nesneler neden düşmüyor?
  • Dünya’nın yüzeyinde yaşıyorsak içinde neler var?
  • Dünya’nın kaç türlü hareketi var?
  • Bu hareketlerin sonucunda bir şey oluşuyor muydu yoksa boşuna mı hareket ediyor bizim gezegenimiz? (Bunları interaktif bir şekilde gösterebilirsiniz.)
  • Dünya dönüyorsa biz bu dönüşü neden hissetmiyoruz?
  • Dünya’nın bu hareketleri sırasında Ay ne yapıyor, sabit mi?
  • Ay Dünya’nın etrafındaki bir turunu ne kadar sürede tamamlıyor?
  • Ay Dünya’nın nesidir?
  • Uydu dediğimde aklına ne geliyor? (yapay uydulardan bahsedecekler) O halde, Ay’a neden uydu diyoruz?
  • Diğer gezegenler de Dünya’nın yaptığı bu hareketleri yapıyorlar mı? Yapıyorlarsa aynı sürelerde mi yapıyorlar acaba hiç düşündün mü?
  • Bizim geceleri gökyüzünde gördüğümüz her yıldızın Güneş gibi bir sistemi var mıdır sence?
  • Güneş Sistemi’ndeki her gezegenin Ay gibi bir uydusu var mıdır? Yani başka bir gezegende yaşasaydık gökyüzünde ay görür müydük acaba?
  • Yıldızlar kayar mı?

Buradan Güneş Sistemi ve gezegenlerle alakalı oldukça fazla basit soru üretebilirsiniz. Güneş Sistemi’nden, yıldızlardan, Samanyolu Galaksisi’ne oradan diğer galaksilere, galaksi kümelerine, evrenin oluşumuna, genişlemesine vb. değinebilirsiniz. Ne kadar ileriye gidebileceğiniz karşınızdaki kişinin tutumuna ve algılamasına bağlıdır.

Bu manada onları etkilerken büyüklük kavramlarını örnek göstermek epeyce etkili oluyor. Güneş ile Dünya’yı kıyaslarken; ‘Güneş bir kavanoz olsaydı içine 1 milyondan fazla Dünya sığardı, buna rağmen Güneş’ten büyük yıldızlar var yaaa.’  Önemli olan onlarda astronomiye dair bir hayranlık, bir farkındalık oluşturmak.

Evet, doğru anladınız. Yalnızca soru sorarak astronomik sohbetler edeceksiniz.

Astronominin “a” sını bilmeyen birisiyle bu tarz bir diyalog kurduğunuzda o kişi için de artık Güneş faklı görünecektir ki sabaha Güneş’le gözünü açan herkesin hakkı olmalıdır bu.

Sonuç olarak öğrenirken öğreteceğiz, bilhassa evrenimizin yarınki emanetçilerine; çocuklara.

Hadi bakalım kolay gelsin. Astronomik dokunuşlarınız bol olsun…

Reyhan Çelik

Kapak fotoğrafı: Julien Dartois – Paris/Choisel – Chateu de Breteuil

Kozmik Anafor Arşivi

Fantastik Uzay Projeleri: Yıldız Motoru

• İçerik Üreticisi:

Bu yazıyı yaklaşık 8 dakikada okuyabilirsiniz.

Görünen o ki insanlık Ay’dan sonra Mars’ı da gözüne kestirdi. Önümüzdeki 10 yıllık süreç, bu konuda çok ciddi gelişmeler gösterecek gibi duruyor. Tabii Mars ile de kalınmayacak, eğer kendi türümüzü yok etmezsek, 21. Yüzyıl sona ermeden Güneş Sistemi’nin pek çok noktası muhtemelen insan oğlunun ulaştığı yerler haline gelecek. Peki ya bunun da sonrası? Bir yıldız motoru yapıp yıldızımızla birlikte yolculuğa çıkmak mı?

Başka yıldızlara gitmeye çalışacak uzak gelecekteki torunlarımız. Ama bu huzur dolu yuvamızı, biricik Güneş’imizi terk etmek istemezsek ne olacak? Başımızı alıp gitmektense, Güneş’imizi de yanımızda götürsek, olmaz mı? Hmm… Bunun da bir yolu var, tek ihtiyacımız ise bir Yıldız Motoru. Kemerlerinizi bağlayın, Güneş Sistemi’ni devasa bir uzay mekiğine dönüştürüyoruz.

İlk bakışta ütopik gibi gelmiş olabilir. Ancak unutmayın; “Fantastik Uzay Projeleri” yazı serisindeyiz. Hem hatırlatmak isteriz ki önceki yazılarımızda “Gök Kancaları” yapıp, Dünya’mızın yörüngesine yerleştirmiştik. Bununla kalmadık, başka gezegenlere, onların uydularına ve hatta gök taşlarına bile gök kancaları kurarak Güneş Sistemi’nin dört köşesini su yolu yaptık. Ender bulunan madenleri ve füzyon için gerekli elementleri Dünya’mıza getirip, füzyona hükmederek enerji sorunumuzu büyük oranda çözdük.

Füzyon da kesmedi, Güneş’in ürettiği her 1 kalori enerjiyi kontrol altına almaya karar verdik. Merkür’ü feda edip bir Dyson küresi yaptık. Bu sayede Kardashev ölçeğinde 2. seviye medeniyet seviyesine yükseldik.

Teknolojide ulaştığımız bu noktayla, hedeflerimizi çok daha ileriye taşıyabileceğiz. Güneş Sistemi artık bizden sorulduğuna göre yeni hedef Güneş Sistemi’nin dışı olmalı. Ancak, uzay boşluğu; karanlık, soğuk ve sıkıcı… Üstelik yakınlarda da ilgi çekici pek fazla şey yok. Örnek verecek olursak, bize en yakın yıldızları içeren Alfa Centauri yıldız sistemi Güneş Sistemi’mizden 4.3 ışık yılı mesafede.

Yani ışık hızıyla gitsek, ulaşmamız 4.3 yıl sürecek. Işık hızının yaklaşık %0.1’i ile yolculuk etsek, 4300 yıllık bir yolculuktan bahsediyoruz. Kaldı ki, şu ana kadar insan yapımı bir aracın ulaşacağı en yüksek hız olarak, Nasa’nın Parker Güneş Sondası’nın 193km/sn’lik hızı öngörülüyor ki bu da ışık hızının sadece %0.064’üne tekabül ediyor. Elbette Dyson küresi teknolojisine ulaşmış bir medeniyet için çok daha hızlı yolculuklar öngörmek yanlış olmasa da uzay boşluğundaki mesafelerin büyüklüğünü de göz ardı etmemek gerekir. Üstelik hedef noktamıza vardığımızda bulacaklarımızın da bu çileli yolculuğa değer olması gerekir.

 

Bu bağlamda bir yıldız motoruna sahip olmak beraberinde çok farklı avantajlar getirebilir. Yıldız motoru, Güneş’i (ya da genel manada bir yıldızı) mevcut yörüngesinden oynatmak ve farklı yönlere doğru hareket ettirmek için tasarlanmış, olası farklı varyasyonları bilimsel olarak kanıtlanmış, hipotetik mega yapıya verilen addır. Güneş’i yerinden oynatacağız deyince tabii, “Eee, Dünya’dakiler ne yapacak? Dünya Güneş’siz mi kalacak?” endişesine kapılabilir insan. Telaşa hiç gerek yok. Dünya ve Güneş Sistemi’nin diğer tüm üyeleri kütle çekim kuvveti ile Güneş’e sabitlenmiştir. Güneş nereye, herkes oraya.

İşte yıldız motorunu güzel kılan en temel özellik de bu diyebiliriz. Yazımızın başında “Güneş Sistemi’ni devasa bir uzay mekiğine dönüştürüyoruz” derken kast ettiğimiz buydu. Hayata geçirilen bir yıldız motoru ile kolonize edilmiş halde Güneş Sistemi’ni toptan hareket ettirebiliriz.

Peki bunu neden yapmak istiyoruz?

  • Samanyolu Gökadası’nda bulunan diğer sistemleri kolonize etmek için, onlara doğru tüm Güneş Sistemi olarak gitmek isteyebiliriz. Yeteri kadar yaklaştığımızda görev araçları gönderip, ihtiyacımız olan kaynakları elde edebiliriz. Ya da yakınlarında bir yere park edip, sürekli yeni komşumuzdan faydalanabiliriz.
  • Dünya’mızı hatta Güneş Sistemi’ni topyekûn yok edecek bir süpernova patlamasının etkilerinden kaçmak zorunda kalabiliriz. Tip 2 seviyesine ulaşmış bir medeniyet, çevresindeki pek çok yıldızın yapısını ve ne kadar ömrünün kaldığını çok detaylı şekilde hesaplayabilmiş olacaktır. Bu da onlara olası süpernova patlamalarını milyonlarca yıl önceden tespit etme kabiliyeti verecektir. Bu medeniyet, kendisini tehdit edecek bir patlamayı ön görmüş ve ondan kaçma mücadelesine girmek zorunda kalabilir.

(Burada bir ayrıntıyı belirtelim, böyle bir olayı gözlemleyerek önceden bilemeyiz. Süpernova patlaması yaşamış bir yıldızı tespit ettiğimizde, o yıldız aslında çoktan patlamış ve ışığı bize ancak ulaşmıştır. O nedenle, önlem alabilmek için yıldızın formasyonunu çok iyi bilip, ne kadar ömrü kaldığını hesaplamak gerekecektir. Bugün, Dünya’mıza zarar vereceği düşünülen süpernova adayı yıldız yoktur.

Betelgeuse isimli büyük kütleli yıldızın her an patlayacağı düşünülse de çok uzak olması nedeniyle, gökyüzünde haftalar sürecek bir ışık şöleninden öteye gitmeyecektir. Bu olay, siz bu satırlar okurken de gerçekleşebilir, milyonlarca yıl sonra da. Dünya’yı tehlikeye atabilecek süpernova patlamalarının 15 milyon yılda bir gerçekleştiği düşünülmektedir.)

  • Bir başka yıldızın yakınlarına sokulmak ve Dünya’mızı onun yörüngesine sokarak Güneş Sistemi’ni terk etmek.

Shkadov İticisi

Aynı Dyson küresinde olduğu gibi, 1937 yılında Olaf Stapledon tarafından yazılan Star Maker romanında yıldız motoru konusu da işlenmiştir. Ancak bilimsel literatüre girmesi, ilk olarak Leonid Mikhailovich Shkadov tarafından 1987 yılında tanıttığı makalesi ile olmuştur. Shkadov, Güneş’in etrafına kurulacak devasa ama çok ince bir ayna tasarlamıştır.

Aslında, Shkadov Thruster (Shkadov İticisi/Roketi) olarak adlandırılan bu yapı, Dyson küresi ebatlarında bir roket motoru olarak düşünülebilir. Prensipte bir roket gibi çalışan motorumuz, birbirlerine ters vektörler olan Güneş’in kütle çekim kuvveti ve radyasyon basıncı sayesinde sabit konumda kalacak, Güneş’ten gelen ışığı, yani fotonları yansıtarak itki kuvveti oluşturacak ve hareket sağlayabilecektir. Ancak Shkadov İticisi’nin bazı dezavantajları vardır:

  • Bu yöntem ile elde edilecek hız muhtemelen tatmin edici olmayacaktır. Galaktik ölçekte kayda değer mesafeler almak yüz milyonlarca yıl sürebilir.
  • Shkadov İticisini, yani aynamızı; gezegenleri ve tabii Dünya’mızı yakma riskini karşı sadece Güneş’in kutuplarının üzerine koyabiliriz. Bu da istediğimiz her yöne gidemeyeceğimiz anlamına gelir.

Kedi olmadan fare yakalama meraklısı insanlık, madem Shkadov İticisi ciddi dezavantajlar barındırıyor, öyleyse daha iyisini tasarlayalım demiş ve de Illinois Üniversitesi’nden Fizik profesörü Matthew Caplan yeni bir tasarım yapmıştır. Shkadov İticisi gibi yıldız motorlarına “Pasif iticiler” tanımlaması yapan Caplan, bir yıldız motoru inşa edecek olan medeniyetin Dyson küresi sahibi olduğu varsayımından hareketle, bu Dyson küresi yardımıyla, termonükleer enerji kullanan ve “Aktif itici” olarak tanımladığı yeni bir yıldız motorunu ortaya çıkarmıştır. En azından kâğıt üzerinde.

Görsel Telif: Getty/Cokada

Caplan İticisi

Caplan iticisinin/roketinin, gerekli kuvveti elde edebilmesi için ihtiyaç duyulan yakıt, Dyson küresinin Güneş üzerinde küçük bir noktaya odaklanması ile oluyor. Aşırı derecede ısınan bölgeden Güneş için küçük ama bizim için büyük kütleler kopması bekleniyor. Bu malzeme, aktif iticimizce yakalanıp, motor üzerinde bulunan füzyon reaktörlerinde enerjiye çevriliyor ve aşırı yüksek ısıdaki nükleer atık, motorumuzun Güneş’e uzak ucundan dışarı atılarak çok büyük bir itki kuvveti elde ediliyor.

Elbette, motorun Güneş’e saplanmaması ve Güneş’i itebilmesi için de motorun Güneş’e bakan ucundan yine motor üzerinde bulunan parçacık hızlandırıcılarda hızlandırılmış hidrojen Güneş’e doğru ateşleniyor. Böylece, Caplan iticisi hem kendini dengelemiş hem de elde ettiği itkiyi Güneş’e yönlendirmiş oluyor.

Caplan, yaptığı çalışmada, iticinin gücünü maksimuma çıkardığımızda, Güneş’in, yıldız motoruna 100 milyon yıl yetecek kadar enerji vereceğini gösteriyor. Ancak, aktif itki yöntemi ile varılacak hızlar sayesinde, bunun çok daha altında bir zaman diliminde yukarıda belirttiğimiz amaçlarımıza ulaşabiliriz.

Güneş’in kütlesini yakıt olarak milyonlarca yıl boyunca harcadığımızda, Güneş’in ömrünü kısalttığımız düşünülmemelidir. Bilakis, bir yıldızın ömrü kütlesi ile ters orantılıdır. Güneş, kütlesinden kaybettikçe, kendi yakıtını daha yavaş harcayacak ve ömrünün kısalması şurada dursun, bilakis uzayacaktır.

Elimizde, böyle bir yıldız motorunun var olduğunu düşünsenize… Kim bilir, belki Samanyolu’ndan sıkılır ve “neden başka gökadaları da kontrol altına almayalım ki?” bile diyebiliriz.

Bekle Andromeda, biz geliyoruz!

Hazırlayan: Uğur Çontu
Düzenleyen: Kemal Cihat Toprakçı

Kaynaklar ve Referanslar: 

1. Mosher, D. (2018, Kasım 05). NASA just smashed the record for the fastest human-made object – Its $1.5 billion solar probe is flying past the Sun at up to 213,200 mph. Erişim Tarihi: Şubat 24, 2021, Erişim Adresi: https://www.businessinsider.com/nasa-parker-solar-probe-fastest-human-object-2018-11

2. Hadhazy, A. (2018, Şubat 15). How to move an entire solar system. Erişim Tarihi: Şubat 24, 2021, Erişim Adresi: https://www.popularmechanics.com/space/deep-space/a10885/the-shkadov-thruster-or-how-to-move-an-entire-solar-system-17000392/

3. Badescu, V., & Catchcart, R. B. STELLAR ENGINES AND THE CONTROLLED MOVEMENT OF THE SUN. Erişim Adresi: https://www.dynamical-systems.org/zwicky/stellarengines.pdf

4. Caplana, M. E. Stellar Engines: Design Considerations for Maximizing Acceleration. Erişim Tarihi: Şubat 24, 2021, Erişim Adresi: https://drive.google.com/file/d/1ZpjAWcPhbCMTFYqPI5HnqtlHGWqzL45S/view

Okumaya devam et

Evrenin Keşfi

Adli Astronomi Nedir? Yerel Hukukta Adli Astronomi Kullanımı

• İçerik Üreticisi:

Bu yazıyı yaklaşık 3 dakikada okuyabilirsiniz.

Neredeyse bütün bilim dalları iç içe olan astronomi en eski ama kendisini sürekli güncellemesiyle en yeni bilim dallarından biridir.

Geleceğin meslekleri arasında gösterilen uzay hukuku, uzay mimarisi, asteroid madenciliği gibi alanlarda ülkeler personel yetiştirmek istiyor ise astronomi eğitimine gerekli önemi vermek zorundadır. Adli astronomi de gelişmek için kendisine yatırım bekleyen adli bilim dalıdır.

Adli astronomi nedir ve ne iş yapar?

Adli astronomi, gökyüzünün geçmiş zamanlarda olan görünümünü ve gök cisimlerinin konumlarını göstermeye yarayan adli bilimin bir dalıdır. Adli bilimde, edebiyatta, tarihsel olaylarda ve sanat tarihinde adli astronomi kullanılmaktadır. Ülkemizde bazı davalarda astronomi, adaletin sağlanmasında katkı sağlıyor. Bu alanda Kandilli Rasathanesi’ne gerekli davalarda başvurular olmaktadır.

Örneğin; 1992 yılında bir asteğmen, bir yüzbaşına fiziksel şiddet uyguluyor. Asteğmen kendisini savunduğunda havanın çok karanlık olduğunu ve kişinin yüzünü göremediğini, bu nedenle onun bir er olduğunu düşünerek “dövdüğünü” ifade ediyor. Burada astronomi devreye giriyor ve kavganın olduğu gün Ay’ın dolunay evresinde olduğu belirleniyor. Bu bilgiden hareketle o tarihte hiçbir ışık kaynağı olmasa da insanların birbirlerinin yüzünün seçilebileceği anlaşılıyor.

Bir trafik kazası olduğunu düşünelim. Bu kazanın davası kazadan 3 ay sonra görüldü diyelim. Eğer kaza yapan kişi; “Hava çok karanlıktı, etrafta aydınlatmalar yoktu, bu yüzden göremedim” gibi bir ifade kullanıyorsa burada devreye yine adli astronomi giriyor. O dönemde Ay’ın hangi evrede olduğu önemli. Kaza yapan kişi asteğmenin durumuna düşebilir.

Van Gogh’un Tablosu ve Adli Astronomi

Van Gogh’un tablosu ile adli astronomi arasında bir bağlantı bulmakta zorlanmış olabilirsiniz. Ancak aslında, Van Gogh’un ünlü eserlerinden birisi olan Evening Landscape with Rising Moon tablosundaki gizem adli astronomi sayesinde çözülmüştür.

Vincent Van Gogh’un Evening Landscape with Rising Moon (Akşam Manzarası ve Yükselen Ay) tablosu

 

2003 yılında SWT fizik profesörleri Donald Olson ve Russell Doescher, İngiliz Profesör Marilynn Olson ile birlikte Sky & Telescope dergisinin Temmuz 2003 sayısında bu ünlü tablo hakkında bir makale yayınladılar. Tablonun tam olarak ne zaman resmedildiği bilinmemekteydi.

Bu tabloda ilk zamanlarda dağın arkasından Güneş’in battığı düşünülmüş. Tablonun üzerinde derin bir çalışma yapan bilim insanları; oradaki gök cisminin Güneş değil Ay olduğunu; Ay’ın doğmaya başladığını, tabloda yer alan buğdayın hangi tarihler arasında hasat edileceği, bu tabloda çizilmiş yerin gerçek bir yer olduğunu, Ay’ın resimde yer alan bölgeden tam olarak hangi günde doğacağını ve bazı diğer önemli sonuçları adli astronomi sayesinde bulabilmişlerdir. Benzer biçimde, geçmiş yıllarda oluşmuş meteor olaylarını incelerken de aslında yine adli astronomiye başvurmuş oluyoruz.

Frederic Edwin Church, The Meteor of 1860 (Görsel Kaynağı: https://www.wikiart.org/en/frederic-edwin-church/the-meteor-of-1860)

 

Astronomlar ve astrofizikçiler sürekli evreni incelemeye çalışırlar. Yıldızlardan ve galaksilerden alınan tek şey ışıktır. Bu ışığı inceleyerek yıldızlar, galaksiler ve diğer gök cisimleri hakkında bilgi edinmeye çalışırlar. Peki, burada astronomların yaptığı çalışmalar da adli astronomiye girmiyor mu? Belki ölmüş bir yıldızın kalıntısı hakkında bilgi edinmek ve bu ölümden sonra yakında yer alan komşu yıldızların nasıl etkilendiğini incelemek de mizansen bir açıdan adli astronomi olarak değerlendirebilir.

Hazırlayan: Sinan Koçak
Düzenleyen: Kemal Cihat Toprakçı

Kaynaklar ve Referanslar:

  1. Güral, N. Adli astronomi. Erişim Tarihi: Şubat 10, 2021, Erişim Adresi: http://egegural.com/adliastronomi.htm
  2. Güral, N. Astronomi ve adli tıp. Erişim Tarihi: 10, 2021, Erişim Adresi: http://egegural.com/ASTVADLI.HTM
  3. Moonrise061003. (2016, Haziran 08). SWT astronomers SLEUTH van Gogh “Moonrise” mystery. Erişim Tarihi: February 10, 2021, Erişim Adresi: https://www.txstate.edu/news/news_releases/news_archive/2003/06/moonrise061003.html
  4. Forensic astronomy. (2020, Kasım 25). Erişim Tarihi: February 10, 2021, Erişim Adresi: https://en.wikipedia.org/wiki/Forensic_astronomy
  5. Ash, S. (2018, April 17). “Forensic astronomy” reveals the secrets of an iconic ansel adams photo. Erişim Tarihi: Şubat 10, 2021, Erişim Adresi: https://www.scientificamerican.com/article/forensic-astronomy-reveals-the-secrets-of-an-iconic-ansel-adams-photo/

Okumaya devam et

Evrenin Keşfi

Perseverance Mars’a İniyor! Yeni Bir Mars Gezginimiz Daha Olacak

• İçerik Üreticisi:

Bu yazıyı yaklaşık 5 dakikada okuyabilirsiniz.

NASA’nın son Mars yüzey aracı Perseverance, Mars yolculuğunun sonuna yaklaşıyor. Bu zamana kadar yapılmış en büyük Mars aracı olan Perseverance, 18 Şubat 2021 tarihinde kızıl gezegenin yüzeyine iniş yapmaya çalışacak.

Mars’a iniş yapmak oldukça zordur ve bu zamana kadar yapılan görevlerin yaklaşık %60’ı başarısız olmuştur. Perseverance’ın iniş şekli ise 2012 yılında başarılı bir şekilde Mars’a inen Curiosity aracının iniş şekli ile benzer olacak. Yani, aracın ısı kalkanı ve sahip olduğu paraşüt Perseverance’ı saatte yaklaşık 20.000 km hızdan saatte 4 km’den daha az bir hıza indirecek. Daha sonra ise bir “gökyüzü vinci” aracı yavaşça yüzeye koyacak.

Perseverance, kuru bir göl yatağı olduğu düşünülen Jezero kraterine inecek ancak tam olarak hangi noktaya iniş yapacağı bu aşamada bilinmiyor. Bu noktanın tam olarak tahmin edilememesinin sebebi ise Mars’ın atmosferine girildiğinde rüzgarların aracı sarsması ve bu durumun tahmin yürütmeyi zorlaştırmasıdır. Bu durumun üzerine arazinin engebeli olması da Jezero’yu iniş yapmak için tehlikeli bir yer haline getiriyor ancak Perseverance, zemine yaklaşırken fotoğraflar çekerek otonom bir şekilde güvenli bir iniş yeri bulmasına yardımcı olacak yeni bir navigasyon sistemine sahip.

Perseverance’in gökyüzü vinci ile Mars yüzeyine inişini gösteren animasyon. (Telif: NASA/JPL)

 

2012 yılında Curiosity’nin gerçekleştirdiği iniş, daha önce yapılmadığı için görev kontrolün başında olan bilim insanları bu durumu rahatsızlık verici bir “yedi dakikalık dehşet” olarak nitelendirmişti. Araç, iniş sırasında atmosfere girişten, paraşütünün açılmasına ve hatta zemine temas etmek için roket yardımıyla yapılan hava manevrasına kadar her şeyi kendisi yapmak zorunda kaldı. Çünkü iniş, Mars’tan Dünya’ya ulaşan sinyallerin gelme süresinden daha kısa bir süre içerisinde gerçekleşmişti. Perseverance için de aynı durum söz konusu olacak ve bütün Mars’a iniş görevleri başarıya ulaşamadığından aynı dehşet yine yaşanacak.

Perseverance’ın iniş detaylarına geri dönecek olursak, araç özel gökyüzü vinci ile birlikte yapacağı kontrollü inişten önce roketler ile yapılan manevralar aracılığıyla iniş alanı için son ayarlamalarını yapacak. Aracın tekerlekleri Mars toprağına değer değmez, vinç Perseverance’dan ayrılarak araçtan güvenli bir uzaklıkta gezegene çarpacak. Daha sonra rutin sistem kontrolleri her şeyin yolunda olduğunu belirlediği anda da araç çalışmaya başlayacak.

Perseverance’ın asıl görevi nedir? Neden bu aracı oraya gönderdik?

Mars 2020 Perseverance Gezgin aracı, NASA’nın bir zamanlar Mars’ta yaşam olup olmadığı konusundaki araştırmasını ileriye götürecek eski mikrobik yaşamın izlerini arayacak. Araçta Mars kaya ve toprak örneği toplayacak bir sondaj cihazı bulunuyor. Araç, gelecekte yapılacak bir görev ile Dünya’ya getirilip detaylı analizleri yapılabilsin diye bu örnekleri mühürlü tüplerde saklayacak. Perseverance, ayrıca Mars’ta gerçekleşecek insanlı keşif programlarının yolunu açmaya yardım edecek teknolojileri de test edecek.

Perseverance, Mars Keşif Programı’nın bilimsel hedeflerini destekleyecek dört tane amaca sahip. Bunlardan ilki, gezegenin yaşanabilir olup olmadığını araştırmak. Yani kısaca geçmiş çevre koşullarının mikrobik yaşamı destekleyip desteklemediğini belirlemeye çalışacak. İkinci amacı, biyolojik imzalar aramak. Özellikle de zaman içinde yaşam belirtilerini koruduğu bilinen özel kayalarda, olası geçmiş mikrobiyal yaşamın işaretlerini arayacak. Üçüncü amacı da kaya ve toprak numunelerini toplayarak Mars yüzeyinde onları saklamak. Dördüncü ve son amacı ise insanlı keşiflere yardımcı olacak Mars atmosferinden oksijen üretimini test etmek.

Perseverance’ın uzun menzilli hareketlilik sistemi, aracın Mars yüzeyinde 5 ila 20 km arasında yol kat etmesine olanak veriyor. Ayrıca bu araç ile getirilen bir diğer yenilik de daha yetenekli bir tekerlek tasarımıdır.

Mars’ta Bir İlk Daha: Mars Helikopteri Ingenuity

Perseverance, aslında ufak bir sürprize de sahip. Araç, Mars yüzeyine indikten sonra alt kısmından çıkaracağı ufak bir helikopteri de Mars ile tanıştıracak. Ve bu helikopterin adı da Ingenuity. Eğer helikopter çalışmayı başarırsa, bizim için tam bir Wright Kardeşler anı olacak, çünkü bu zamana kadar Dünya atmosferi dışında hiçbir yerde helikopter uçurmayı denemedik.

Ingenuity’nin NASA tarafından yapılan görsel tasviri.

 

Ingenuity, sadece bir teknoloji tanıtımı olacak ve çok ince Mars atmosferinde (Dünya atmosferinin %1’i yoğunlukta) en fazla 15 dakika kadar uçabilecek. Ancak bu helikopter başarı ile çalışırsa gelecekte ulaşılamayan yerlere gitmek için bu tarz helikopterler kullanılabilir. Ayrıca daha sonra göndereceğimiz araçlar ve astronotlar için kılavuz olması adına da bu helikopterlerden faydalanabiliriz.

Ingenuity dışında araçta başka bir teknoloji tanıtımı daha mevcut. Bu aygıt, Mars’ın zayıf atmosferinde yer alan karbondioksitten oksijen elde etmek için kullanılacak ki bu teknoloji önemli çünkü gelecekte oraya gidecek kaşiflerin Mars’ta hayatta kalabilmeleri için bu gerekli olacak.

Hazırlayan: Burcu Ergül
Düzenleyen: Kemal Cihat Toprakçı

Kaynaklar:

  1. Crane, L. (n.d.). NASA has launched its Perseverance Mars Rover and INGENUITY HELICOPTER. Erişim Tarihi: Şubat 15, 2021, Erişim Adresi: https://www.newscientist.com/article/2250181-nasa-has-launched-its-perseverance-mars-rover-and-ingenuity-helicopter/
  2. Crane, L. (2021, Şubat 11). NASA’s perseverance rover is about to land on Mars and look for life. Erişim Tarihi: Şubat 15, 2021, Erişim Adresi: https://www.newscientist.com/article/2267509-nasas-perseverance-rover-is-about-to-land-on-mars-and-look-for-life/
  3. Howell, E. (2021, Şubat 11). NASA’s perseverance rover is one week away from a DARING landing on MARS. watch how it works. Erişim Tarihi: Şubat 15, 2021, Erişim Adresi: https://www.space.com/mars-rover-perseverance-landing-4k-video-animation
  4. Mission overview. (n.d.). Erişim Tarihi: Şubat 15, 2021, Erişim Adresi: https://mars.nasa.gov/mars2020/mission/overview/

Okumaya devam et

Amatör Astronomi

Kuğu Takımyıldızı (Cygnus)

• İçerik Üreticisi:

Bu yazıyı yaklaşık 2 dakikada okuyabilirsiniz.

Kuğu Takımyıldızı, gökyüzünün en bilinen ve astronomi gözlemlerinde yön tayini için sıkça kullanılan takımyıldızlardan biridir.

Yaz aylarında, gece gökyüzüne bakarsanız eğer, tam tepenizde kanatlarını açmış güneye doğru uçan devasa ve bir o kadar da heybetli bir kuş görürsünüz. Hemen yanı başında yer alan Kertenkele (Lacerta) Takımyıldızı’ndan kaçar gibi bir hali olan bu dev kuş, Kuğu (Cygnus) Takımyıldızı’dır ve kuzey yarımkürenin en parlak takımyıldızlarından biridir.

Bizden bir hayli uzakta yer alıyor olmasına rağmen gökyüzünün en parlak 19. Yıldızı olan Deneb Yıldızı, Kuğu’nun kuyruğunda yer almaktadır. Zaten adı da bu yüzden Deneb’dir, çünkü Deneb Arapçakuyruk” anlamına gelmektedir.

Yaz Üçgeni, yaz aylarının en belirgin gökyüzü desenidir.

 

Deneb, milyonlarca yıl içerisinde bir süpernovaya dönüşerek yok olacağı düşünülen, çok büyük boyutlarda ve bir o kadar da parlak beyaz rengiyle kendini gösteren bir dev yıldızdır. Deneb ayrıca, Kuğu Takımyıldızı’nın komşusu olan Lir Takımyıldızı’ndaki Vega ve Kartal Takımyıldızı’ndaki Altair’le birlikte yaz üçgeninin köşelerini oluşturan yıldızlardan biridir. Debeb yıldızının tam karşı noktasında yani Kuğunun kafasının bulunduğu yerde Albiero Beta yıldızı yer almaktadır. Kappa Kuğu ve Mü Kuğu yıldızları ise sağlı sollu olarak Kuğunun kanatlarını oluşturan yıldızlardır.

Kuğu takımyıldızı, arkaplanında görülen Samanyolu Gökadası şeridi nedeniyle bir hayli zengin bir içeriğe sahiptir. Bu sebeple bu bölgeye basit dürbün ile baksanız bile rahatlıkla göz alabildiğine sayısız yıldız bulutları ile karşılaşabilirsiniz.

Eski dönemlerde insanlar yıldızların dizilimlerini bir şeylere benzetme konusunda oldukça yaratıcıydılar. Kuğu Takımyıldızı da bu yaratıcı benzetimlerin güzel bir örneğidir.

 

Samanyolu Gökadası, tam olarak Kuğu Takımyıldızının yer aldığı noktada ikiye ayrılır ve iki ayrı kol olarak gökyüzünde yoluna devam eder. Gökadanın bu noktada bu şekilde görünüyor olmasının en temel sebebi, arka planda yer alan yıldızları gölgeleyen ve “Büyük Çöküntü” adı ile de bilinen devasa toz bulutlarının bu bölgedeki varlığıdır.

Kuğu Takımyıldızında yer alan ve bilinen en meşhur derin uzay cisimleri; Kuzey Amerika Bulutsusu (NGC 7000), Pelikan Bulutsusu (IC 5067) ve elbette ki Peçe Bulutsusu‘dur

Hazırlayan: Sinan DUYGULU

Okumaya devam et

Çok Okunanlar