Connect with us

Dünya

Ay Haricinde Kalıcı Bir İkinci Uydumuz Olabilir Mi?

Bu yazıyı yaklaşık 6 dakikada okuyabilirsiniz.

Bilim insanları, yakın bir zaman önce Dünya yörüngesinde 2020 CD3 adını verdikleri yeni bir “Ay” keşfettiklerini duyurdular.

2020 Şubat ayında keşfedildiği duyurulan yeni “uydu” yaklaşık 2-3 metre çapında C tipi bir asteroit. Bunun gibi asteroitler zaman zaman Dünya’nın çekim gücüne kapılıp geçici olarak yörüngemize girebiliyorlar. 2006 yılında keşfedilen 2006 RH120 de bunlardan biriydi ancak, 1.5 yıl dahi geçmeden yörüngeden kopup gitti.

Aşağıdaki videoda yörüngesini ve zaman aralıklı alınmış fotoğraflarını gördüğünüz 2020 CD3’ün de kaderinin böyle olacağı, bir süre sonra Dünya yörüngesinden çıkıp Güneş çevresindeki yörüngesine döneceği hemen hemen kesin gibi.

Neden ikinci bir “kalıcı” uydumuz olamıyor?

Süt Kardeşler filmindeki ünlü repliği hatırlarsınız; “Gulyabani diye birşey yoktur! Ama olabilir de”.  Bu arada hatırlatalım; Türkiye’de yaşayıp da Süt Kardeşler’i izlememiş olanlar, bilimkurgu seviyorum deyip de Star Trek dizilerine burun kıvıranlar bizden değildir. Hatta dombilidir. Neyse, konumuza dönelim.

Dünya’nın uydusu Ay, Güneş Sistemi içinde gezegeninin kütlesine oranla (Plüton ve Charon ikilisini saymazsak) en büyük kütleye sahip olan uydudur. Yani, her iki gökcismi de birbirlerine ciddi biçimde kütle çekimsel etkilerde bulunurlar. Ayrıca, Ay Dünya’ya ortalama 380 bin km’lik uzaklığı ile oldukça yakın bir yörüngede döner.

Bir gezegenin kayda değer bir uydu sahibi olabilmesi için (Mars’ın uyduları gibi basit kaya parçalarından bahsetmiyoruz anlayacağınız üzere) öncelikle oluşum aşamasında uydu veya uydu adaylarıyla etkileşim içinde olması, yani birlikte oluşmuş olmaları gerekir. Oluşum aşamasında bu durum gerçekleşmemiş ise, sonradan bir gökcismini yakalayıp kendi uydusu haline getirmesi oldukça güçtür ve bazı şartlara bağlıdır. Bir gezegenin başka bir gökcismini yakalayıp uydusu yapabilmesi için:

• Kütlesinin uydu adayına kıyasla yeterince büyük olması
• Güneş gibi daha büyük gökcisimlerinin kütle çekim alanlarıyla başa çıkabilecek güçte kütleçekim alanına sahip olması
• Eğer kütlesi küçük bir gezegen ise, Güneş’in kütle çekim alanının uzaklık nedeniyle yeterince zayıf olduğu bir mesafede bulunması (Plüton gibi yani).
• Yakalayacağı gökcisminin açısal momentumunun kendisinin açısal momentumundan küçük olması (anlaması zor, biliyorum) gerekir.

Uydu

Şöyle küçük, sevimli bir uydumuz daha olsa fena mı olurdu ki?

 

Şimdi gelelim Dünya’ya: Dünya, Güneş’e 150 milyon km uzaklıktadır. Ve bildiğiniz gibi, Güneş muazzam kütleçekimi ile tüm gezegenleri kendi çevresinde tutar. Ancak, Dünya’nın kütlesi, kütle çekim alanının Güneş’ten daha baskın olduğu bir “hakimiyet alanı” oluşturmasını da sağlar. Dünya’nın kütle çekiminin Güneş’e baskın geldiği bu alanın boyutları, yarıçapı 1.5 milyon km olan bir küre biçimindedir.

Buradan şunu anlıyoruz ki, eğer Dünya bir gökcismini yakalayıp uydusu yapacak ise, o gökcisminin gezegenimize 1.5 milyon km’den daha yakından geçmesi gerekir. Ancak bu yeterli değil, çünkü gökcisminin Dünya yakınından geçerken gezegenimizin bir şekilde yörüngesine girebilmek için uygun hızda olması gerekiyor. Eğer gökcismi yavaş ise, Dünya’nın üzerine düşer, hızlı ise yanımızdan geçip gider. Bu geçiş hızı (momentumu) ne kadar uzaktan geçtiğine bağlı olarak yörüngeye girebilmesi için değişir. Örneğin 1 milyon km uzaktan geçiyorsa yavaş, 600 bin km uzaktan geçiyorsa biraz daha hızlı olmalıdır. Aksi halde gezegenimizin kütleçekimine yakalanıp yörüngeye giremez.

Dünya yakınında yer alan çoğu gökcisminin (asteroidler, kuyruklu yıldızlar vs) hızı, gezegenimizin kütle çekiminin yakalayabileceğinden çok daha fazladır. Yani, ne kadar yakınımızdan geçerse geçsin Dünya kolay kolay bir gökcismini yakalayıp yörüngesine sokacak kütle çekim gücüne sahip değil.

Öyle ya da böyle bir gökcismi gezegenimizin yörüngesine girdiğinde de bir başka sorunla karşılaşıyoruz: Ay!

Ay, gezegenimize çok yakındır ve yukarıda da söylediğimiz gibi oldukça güçlü bir çekim gücü vardır. Dolayısıyla, Dünya’nın yörüngesine giren gökcismi Ay’ın kütle çekimi ile başetmek durumunda. Şöyle bakalım o zaman:

Uydu

Bilim kurgu filmlerinde birçok gezegenin çift uydusu olduğu görülür. Ama bizim o şansımız pek olmayacak gibi.

 

Ay, gezegenimizin çevresinde, 380 bin km uzakta yaklaşık 29 günde bir dönüyor. Yeni gelmiş taze uydumuz ise 150 bin km uzakta yer alıyor olsun ve 15 günde bir tur tamamlasın. Bu şu anlama gelir; Ay’ın her bir turunda, yeni uydumuz iki tur atacak, yani Dünya, Ay ve Yeni uydumuz Ay’ın her bir turunda 2 kere aynı hizaya gelecekler. Yani, yeni uydumuz üzerinde her ay 2 kere güçlü bir gel-git kuvveti yaşanacak. Bu gelgit kuvvetleri yeni uyduyu dengeyi sağlayabilmesi için zaman içinde ya Ay’a, ya da Dünya’ya yaklaştıracak. Eğer uydumuz bu süre içinde gel-git dengesini sağlayabileceği bir yörüngeye parçalanmadan veya savrulmadan girebildi ise, ne alâ…

Tabi bu sürecin binlerce, hatta milyonlarca yıl alacağını hatırlatalım. Örneğin şu anda böyle “zavallı” bir uydumuz yörüngeye girse ve gökbilimciler “çok durmaz orada” dese, emin olun siz, torunlarınız, onların torunları ve onların torunlarının kuşaklarca sonrasına kadar uydu yerinde kalacaktır. İnsanların, devletlerin veya imparatorlukların ömürleri, bu tarz “kısa süreli” gökbilim olaylarını izlemek için yeterince uzun değildir.

Yeni uydumuz; Ay ve Dünya’dan uzakta bir yörüngeye girmiş ise, biraz daha şanslı olabilir. Örneğin yaklaşık 1 milyon km uzakta yörüngeye girmiş Ay’ın dörtte biri kütlesinde ikinci bir uydu, çok daha az gel-git etkisine maruz kalacağı için daha uzun süreler, hatta belki de milyarlarca yıl boyunca Dünya’nın uydusu olmaya devam eder. Tabi, bu kadar uzaktaki bir uydu yeryüzünde kendisini izleyenler için pek keyifli bir seyir sunmaz. Küçük, ancak dikkatle bakıldığında yuvarlak olduğu anlaşılan, aşırı parlak bir yıldız gibi görünecektir gözümüze.

Sözün özü, yukarıdaki anlatımımızdan anlamış olmalısınız ki, Dünya’nın kalıcı bir ikinci uydusunun olması önümüzdeki süreçte sayısal lotodan üst üste birkaç kere milyonları kapmanız gibi düşük bir ihtimal. Geçmişte belki, Ay’ın ilk oluşum zamanlarında ikinci, hatta üçüncü uydularımız da olmuş olabilir. Ki şu anda bile zaman zaman küçük asteroidler geçici dönemlerde Dünya’nın yörüngesine girip ikinci uydularımız oluyorlar.  Ancak onların Dünya ve Ay (ve dahi Güneş) arasındaki gel-git savaşının kurbanı olduklarını artık siz de biliyorsunuz. Arada gezegenimizin kütleçekimine yakalanmış meteor büyüklüğünde uydularımız da olmuş olabilir. Fakat, milyon yıllar içinde onların da nihai kaderi yok olmaktan öte olmamış.

Son olarak; “Ay Dünya’yı yalnızlığa mahkum eden kıskanç bir uydudur” demiş miydik?

Zafer Emecan

Not: İlk olarak 1 Ekim 2015 tarihinde yayınlanan bu yazımız, yeni bilimsel gelişmeler eşliğinde güncellenip geliştirilerek tekrar yayına sunulmuştur.

Dünya

Ay Antlaşması – Uzay Hukukunun Öksüz Evladı

• İçerik Üreticisi:

Bu yazıyı yaklaşık 4 dakikada okuyabilirsiniz.

Birleşmiş Milletler bünyesinde kaleme alınan ve Uzay Hukukunun kaynakları arasına giren bu antlaşmanın resmi adı, “Devletlerin Ay ve Diğer Gök Cisimleri Üzerindeki Faaliyetlerini Düzenleyen Antlaşma”dır. Kısa olarak Ay Antlaşması – Moon Treaty adı ile bilinmektedir.

Soğuk Savaş’ın gölgesi Dünya üzerinde iken, peş peşe uzaya dair anlaşmalar BM tarafından uluslararası camianın oylarına sunulmuştur. Daha önceki yazılarımızda bu anlaşmaların çoğuna değindik. Ay Antlaşması’nın, bu diğer antlaşmalardan temel farkı, Dünya devletlerinin birçoğu tarafından imza edilmemiş ve kabul edilmemiş olmasıdır.

Antlaşma, Aralık 1979’da BM’ye sunulmuştur. Gerekli beş devletin imzasının Temmuz 1984’te toplanması ile de resmen yürürlüğe girmiştir. 2016 tarihi itibarı ile sadece 17 devlet tarafından onanmıştır. Kapsamlı ve tüm insanlığın çıkarlarını gözeterek kaleme alınan antlaşma, 11. maddesi yüzünden uzay yetenekli büyük devletler tarafından rağbet görmemiştir.

Ay Antlaşması

Antlaşmaya göre Ay, insanlığın ortak malıdır ve hiçbir millet yahut devlet, üzerinde tek başına hak iddia edemez.

 

Dünya devletlerinin anlaşmayı imzalamaktan çekinmesinin asıl sebebine değinmeden önce, ana hatlarıyla Ay Antlaşması hükümlerine bir göz atalım:

  • Bu antlaşma, Dünya hariç, Ay ve Güneş Sistemindeki tüm gök cisimlerini kapsar.
  • Ay ve gök cisimleri ve çevrelerindeki yörüngeler münhasıran barışçı amaçlarla kullanılır. Belirtilen bu uzay alanlarında askeri amaçlı çalışma yapılamaz, askeri üs kurulamaz, nükleer ve kitle imha silahları yerleştirilemez, bu sahalar tehdit amaçlı kullanılamaz. Ancak güvenlik ve araştırma amacıyla askeri personel bulundurulabilir.
  • Ay ve gök cisimleri insanlığın ortak malı olarak tüm devletlerin erişimine, araştırma yapmasına, istasyon kurmasına ve benzeri faaliyetlerde bulunmasına açıktır. Sayılan bu haklar engellenemez.
  • Ay ve gök cisimlerinde kurulacak üsler, buradaki laboratuvar ve cihazlar, diğer imzacı devletlerin ziyaret ve incelemelerine açık olacaktır.
  • Ay ve gök cisimlerinde yapılacak olan araştırma ve diğer faaliyetler, bunlardan elde edilen bulgu ve sonuçlar düzenli aralıklar ile BM Genel Sekreterliği’ne bildirilecektir.
  • Ay ve gök cisimlerinden getirilen örnekler, bu örnekleri getiren devletlerin mülkiyetinde olacaktır. Ancak diğer devletlerin bu örnekleri isteme ve inceleme haklarına saygı göstereceklerdir.

Ay Antlaşması bu noktaya kadar, genel geçer kapsamı, barışçıl amaç ilkesi, faaliyetlerin niteliği vb. Uzay Hukuku ilkeleri kapsamında kaleme alınmıştır. Ancak Ay Antlaşması’nın 11. maddesi ABD, Rusya, Çin gibi “Uzay Yetenekli” devletlerin bu anlaşmadan uzak kalmasına sebep olmuştur.

Ay Antlaşması madde 11 özetle der ki;

  • Bu Anlaşma hükümlerinde yansıtıldığı üzere Ay ve doğal kaynakları insanlığın ortak mirasıdır. Ay’da, kullanım ya da işgal yoluyla ya da herhangi bir başka yolla ulusal egemenlik tesis edilemez. Ay’ın yüzeyi veya alt yüzeyi, herhangi bir kısmı veya doğal kaynakları, herhangi bir Devlet, uluslararası ya da hükümetler arası veya sivil toplum kuruluşu, ulusal organizasyon veya sivil toplum kuruluşu veya herhangi bir gerçek kişinin mülkiyetinde olamaz. Ay’ın yüzeyinde veya yüzey ile bağlantılı yapılar da dahil olmak üzere Ay’ın yüzeyinde veya altındaki sahalara yerleştirilen personelin, uzay araçlarının, ekipmanların, tesislerin, istasyonların ve tesisatların varlığı, Ay üzerinde herhangi bir mülkiyet hakkı tesis etmez.
  • Ay ve gök cisimlerinden geniş çaplı ekonomik veya diğer sivil amaçlar ile yararlanma söz konusu olursa, bu durum ayrı bir işletme rejimi anlaşması ile düzenlenecektir. Temel ilke, teknik olanakları ve teknolojiyi sağlayan devletlerin haklarına ve gelişmekte olan ülkelerin ihtiyaçlarına özen gösterilerek, elde edilecek kazançtan BM üyesi her devletin hakkaniyetli bir biçimde yararlanmasını sağlamaktır.

Bu hüküm çerçevesinde uzay yetenekli devletlerin büyük paralar ve çaba harcayarak bir gök cisminde elde edeceği fayda ve kazancı, tüm ülkelerle paylaşmak zorunda bırakılmalarını kabul etmemeleri temelde anlaşılır bir durumdur. Peki hangi ülkeler bu antlaşmayı imzaladı ve kabul etti?

Fransa, Hindistan, Romanya ve Guatemala Ay Antlaşması’nı sadece imzalamışlar, fakat henüz onaylamamışlardır.

Avusturya, Belçika, Şili, Kazakistan, Kuveyt, Lübnan, Meksika, Fas, Hollanda, Pakistan, Peru, Filipinler, Suudi Arabistan, Uruguay, Venezuela ve TÜRKİYE bu antlaşmayı imza ya da katılma yoluyla onamışlardır ve de antlaşmaya TARAF HALİNE GELMİŞLERDİR.

Türkiye’nin katılım bildirisi linki: http://treaties.un.org/doc/Publication/CN/2012/CN.124.2012-Eng.pdf

Ay Antlaşması’nın bağlayıcılık hususu bakımından diğer uzay anlaşmalarından bir farkı bulunmamaktadır. Bu anlaşma, anlaşmayı onayan beşinci ülkenin bunu BM’ye bildirmesinden 30 gün sonra yürürlüğe girer. Antlaşmayı daha sonra onayan ülkeler için anlaşma, bu durumu bildirmelerinden 30 gün sonra geçerli olur.Bu hali ile Ay Antlaşması sadece onu onayan ülkeler tarafından bağlayıcıdır.

Hazırlayan: Yavuz Tüğen

Bu yazımız, sitemizde ilk olarak 3 Aralık 2019 tarihinde yayınlanmıştır.

Okumaya devam et

Dünya

Aurora (Kutup Işıkları) Nedir Ve Nasıl Oluşur?

• İçerik Üreticisi:

Bu yazıyı yaklaşık 4 dakikada okuyabilirsiniz.

Aurora denilen görsel şölen, Güneş fırtınalarının uzaya yaymış olduğu yüklü parçacıkların Dünya’nın manyetik alanı ile etkileşmesi sonucu oluşan göz alıcı ışıklardır. “Kutup Işıkları” da denilen bu parıltılar, tarih boyunca insanları büyülemiş muhteşem ışık şovlarıdır.

Kuzey ve Güney kutup noktalarında gözlemleyebildiğimiz Auroralar, Aurora Borealis (Kuzey Işıkları) ve Aurora Australis (Güney Işıkları) olarak da bilinirler.

Auroralar nasıl oluşurlar?

Güneş rüzgarlarıyla, yıldızımızdan yaklaşık saatte 1 milyon mil hızla uzaya fırlatılan ve hayli yüksek oranlarda yüklü elektronlardan oluşan parçacıklar, Güneş’ten ayrıldıktan neredeyse 40 saat sonra Dünya’nın çekirdeğinin ürettiği manyetik güç çizgilerini izleyerek manyetosfere ulaşırlar ve atmosferde bulunan elementlerle etkileşime girerler.

Manyetik Alan

Güneş rüzgarlarının taşıdığı yüklü parçacıklar, Dünya’nın manyetik alanı tarafından saptırılarak yönlendirilir. Ancak bunların bir bölümü, manyetik alan çizgilerini takip ederek gezegenimizin manyetik kutuplarından geçer ve atmosfere ulaşır.

 

Bilim insanı Celsius, 1741 yılında Auroraların meydana getirdiği manyetik akımları, manyetik kontrolün kanıtı olarak tanımlamıştır.

Kristian Birkeland ise 1908 yılında manyetik akımın Aurora arkı boyunca bu tür partikül hareketlerinin genellikle gün ışığından karanlığa doğru, Doğu-Batı doğrultusunda hareket ettiğini savunmuştur. Bu yönlenme hareketi daha sonra “Aurorasal Elektron Hareketi” ismini almıştır (ayrıca Birkeland akımı olarak da bilinir).

1800’lü yılların sonunda, Alman gökbilimci Hermann Fritz‘in katkılarıyla Auroranın çoğunlukla “Aurorasal Bölge” de görüldüğü saptanmıştır (Aurorasal Bölge Dünya’nın manyetik kutbunun çevresinde yaklaşık 2.500 km çapında halka şeklinde bir bölgedir). Bunun dışında oluşabilecek güçlü bir manyetik fırtına, geçici olarak Aurasal ovali genişlettiğinde, nadiren ılıman enlemlerde de görülebilir.

29 Temmuz 1998 yılında THEMIS uzay sondaları ilk kez Auroralara sebep olan manyetosferik fırtınanın başlangıcını görüntülemeyi başarmıştır. Sonda, Aurorasal yoğunlaşma başlamadan 96 saniye önce manyetik temas fikrini kullanarak ölçüm yapmış ve bunun üzerine astronom Vasilis Angelopoulos “Verilerimiz ilk kez açıkça gösteriyor ki manyetik temas bu olayın tetikleyicisidir.” ifadesini kullanmıştır.

Aurora ISS

Uluslararası Uzay İstasyonu’ndan Auroraların görünüşü.

 

Büyük manyetik fırtınalar, yaklaşık olarak 11 yılda bir gerçekleşen Güneş lekesi döngüsü ile en yoğun noktalara ulaşırlar. Bu fırtınalar, takip eden 3 yıl boyunca da etkisini sürdürebilir. Aurorasal Bölgenin içinde Auroranın meydana gelme olasılığı, genel itibariyle IMF (Gezegenler arası manyetik alan) çizgilerinin eğimine, özellikle de güney yönlü olmasına bağlıdır.

Solar rüzgar (Güneş rüzgarı) partikülleri çarpışır ve Dünya’nın manyetik alan çizgileri boyunca hızlanırlar. Bu sebeple iyonize olan atmosferin üst kısımlarındaki (80 km den yukarısında) oksijen ve nitrojen atomları, bu parçacıklar tarafından uyarılırlar.

Elektron kazanan nitrojen (azot) atomları ile, uyarılan oksijen atomlarının temel enerji düzeyine dönüşümüyle foton salınımı ortaya çıkar. İşte gökyüzünde gördüğümüz Auroralar, bu fotonlardır.

Tüm bu manyetik ve elektriksel kuvvetler, sürekli kayan kombinasyonlarla birbirleri ile etkileşirler. Bu kaymalar ve akışlar, 50,000 voltta 20,000,000 ampere kadar ulaşabilen atmosferik akımlar boyunca “Aurora’nın Dansı” şeklinde görülebilmektedir.

Aurora

Kuzey kutbuna yakın görülen auroralara bir örnek. Bu fotoğrafta görülen kuzey ışıkları, çıplak gözle bu kadar belirgin görülemez. Bu fotoğraf, uzun pozlama sonucu elde edilen belirginleşmiş bir görüntüdür.

Bu göz alıcı renkler nasıl oluşmaktadır?

Auroraların renkleri, Güneş’ten rüzgarlarıyla gelen yüklü parçacıkların atmosferimizde hangi elemente ait atomla çarpıştığına ve karşı karşıya geldikleri atmosfer yüksekliğine bağlıdır. Temel olarak açıklayalım:

Oksijen: Yeşil veya kahverengimsi kırmızı, absorbe edilen enerjinin miktarına bağlı olarak 240 km yüksekliğe kadar yeşil, bunun üzerinde ise kırmızı renktedir. Oksijenin başka bir atom veya molekülle çarpışması yüksek enerjisini emecek ve temel hale geçmesine engel olacaktır. Atmosferin üstünde yüksek oranda oksijen bulunur, Bu tür çarpışmalar, seyrek olduğu için oksijen kırmızı ışık yayabilir.

240 km’den aşağıya indikçe, çarpışma olasılığı artar ve böylece kırmızı renk oluşamaz. Bunun temel sebebi, başka bir atom veya molekülle çarpışmaların, temel hale geçmesine engel olacak ve sonunda yeşil ışık yayacak olmasıdır.

Nitrojen (Azot): Mavi, veya kırmızı. Bunun dışında atom iyonize olduktan sonra tekrar elektron kazanırsa mavi ışık oluşacaktır. Yüksek enerji seviyesinden temel seviyeye geri dönüyorsa kırmızı ışık yayacaktır. 90 km yüksekliğe kadar mavi bunun üzerinde ise kırmızı ışık görülecektir.

Yazan: Ulaş AKKAYA
Düzenleyen: Sinan DUYGULU & Zafer EMECAN
Bu yazımız, sitemizde ilk olarak 14 Ocak 2018 tarihinde yayınlanmıştır.

Okumaya devam et

Dünya

Astronomide Zaman Ölçümü: Güneş Zamanı, Yıldız Zamanı ve Gün

• İçerik Üreticisi:

Bu yazıyı yaklaşık 4 dakikada okuyabilirsiniz.

Yaz saati, kış saati, saatler ileri geri derken, ülkemizde son yıllarda, büyükten küçüğe herkes aslında astronomik bir olguyu konuşuyor. Saat dilimimizin değişmesi iyi mi oldu kötü mü oldu bilemeyiz ama, bu konuya istinaden, Astronomide Yerel Zaman ve değişimleri üzerine sizin için bir yazı hazırlamaya çalıştık.

Neden Dünya üzerinde her coğrafi bölgede saat aynı değil, Yerel Zaman ne demek gibi sorulara yanıt olarak aklınıza ilk başta, Dünya’nın yuvarlak olduğu ve döndüğü geliyor ise doğru yoldasınız. Dünya’nın kendi ekseninde dönen yuvarlak bir cisim olması, zamanı ölçmek için temel bir birimdir.

Günlük yaşamımızda bu dönmeyi sabit, yani çok uzun zaman sürecinde de olsa değişen temel açısal döneme hızını, değişmez ve bir turu tam olarak 24 saat kabul ederiz. Ama hassas Astronomik ölçümlerde, özellikle dönme süresi önemlidir ve dikkatli hesaplanmazsa karışıklığa sebep olur.

Göksel meridyenler, enlemler… Astronomlar zaman hesaplamalarında ve gözlemlerinde ileri matematik ile çalışırlar.

 

Bu sebeple astronomlar, Dünya’nın kendi ekseninde dönme hareketine dayanan ama yörüngedeki hareketini de hesaba katarak ve Güneş’i ya da bir yıldızı referans alarak, üç temel şekilde zaman ölçü birimlerini saptarlar.

  • Yıldız Zamanı: Bir Yıldız Günü, ilkbahar noktasının bir gözlemcinin göksel meridyeninden peşi sıra geçişi arasındaki zaman aralığı olarak tanımlanır ve 24 Yıldız Zamanı Saatine eşittir. İlkbahar Noktası, Güneş’in görünen yıllık deviniminde gök eşleği(gök ekvatoru) ile tutulumun kesim noktalarından biri olarak özetlenebilir.
equinox

Vernal Equinox; İlkbahar Noktası

 

İlkbahar noktası, gözlemcinin görsel meridyeninde bulunduğu zaman o yerdeki yıldız zamanı 0h’dir. Bu tanım, her gözlemcinin Dünya’dan uzaya baktığı konum aynı olmadığı için yani, göksel meridyenleri farklı olduğu için yersel kabul edilir, bu farktan ötürü de bir yıldızın iki gözlem yerine ait saat açıları farkı, bu yerlerin boylam farkına eşittir.

Saat açısı kısaca, gözlenen yıldızın saat çemberinin, gözlem yerinin göksel meridyenine göre, batı yönünde yaptığı açı olarak tanımlanabilir.

Yıldız günü uzunluğu, ilkbahar noktasının aynı göksel meridyenden peşi sıra geçişindeki sürenin 1/120 saniyelik farkından dolayı, uzun vadede değişiklik gösterir.

  • Gerçek Güneş Zamanı: Güneş’in, bir gözlem yerine ait saat açısına, o yerdeki Gerçek Gözlem Zamanı denmektedir. Güneş, o yerin göksel meridyeninde bulunduğu anda, o yerde Gerçek Öğle Zamanı olduğu kabul edilir. Temel olarak, Dünya’nın Güneş etrafındaki eliptik yörüngesinde sabit hızla hareket etmemesinden, Gerçek Güneş Gününün uzunluğu sabit olmayıp mevsimden mevsime değişmektedir. Bu değişimler de hesaplamalarda Astronomlar tarafından göz önünde bulundurulmak durumundadır.
  • Ortalama Güneş Zamanı: Bütün bu bahsedilen düzensiz hareketler Astronomları teorik, gerçekte olmayan, düzenli hareket eden bir Güneş tanımlamaya yöneltmiştir. Ortalama Güneş diye anılan bu sanal Güneş’in, 21 Mart’ta tam İlkbahar Noktasında bulunduğu, gök ekvatoru üzerinde de düzenli hareket ettiği kabul edilir.

İşte bu Ortalama Güneş’in saat açısına Ortalama Güneş zamanı denir ve gözlemcinin göksel meridyeninden peşi sıra geçişi arasında kalan zamana bir Ortalama Güneş Günü denir.

Ve nihayetinde, Ortalama Güneş ve Ortalama Güneş Zamanı bizi günlük hayatta kullandığımız Takvim Zamanı’na götürür. Takvim Zamanı’nda Ortalama Güneş Zamanı’na göre çalışan bir saat, ortalama gece yarısında 0h’yi gösterir ve bizim için yeni bir takvim günü başlar. Takvimin Zamanı’nın bölgesel olarak özelleşmesi ise coğrafi konumlarla ilişkilidir.

Türkiye’de Yaz ve Kış Saati Uygulaması

Dünya üzerinde, Greenwich başlangıç meridyeninden itibaren, eşit aralıklı, 24 tane standart meridyen ve bunlar yardımı ile de 24 saat dilimi tanımlanmıştır. Buna göre, komşu iki meridyen arasındaki açı 15 derecedir. Bir standart meridyenin 7 dakika 15 derece sağından ve solundan geçen meridyenlerle sınırlanan bölgeye o standart meridyene ait Saat Dilimi denir. Aynı saat diliminde bulunan yerler aynı Ortalama Güneş Zamanı’nı kullanır ve bu zamana Bölge Zamanı (Yerel Zaman) denir.

Greenwich, başlangıç meridyeni ile tanımlanan bölge zamanı için Genel Zaman (Universal Time=U.T) terimi kullanılır.

turkey

Türkiye’den biri İzmit civarından olmak üzere, 30 derecelik doğu standart meridyeni, diğeri de Erzurum civarından olmak üzere, 45 derecelik doğu standart meridyeni geçmektedir.

Ülkemizden iki standart meridyen geçtiğinden, 1972 yılından 2016 yılına kadar Türkiye Bölge Zamanı saati, kış ayları için genel saati gösteren saatten 2 saat ileri, yaz ayları için genel saati gösteren saatten 3 saat ileri olacak şekilde kullanılmıştır.

8 Eylül 2016 itibariyle de Türkiye Bölgesel Zamanımız, 45 derecelik doğu standart meridyeni hesaplamalarıyla, genel saati gösteren saatten 3 saat ileri olacak şekilde 29825 sayılı Resmi Gazete’de yayımlanarak yürürlüğe giren 07/09/2016 tarihli 2016/9154 sayılı Bakanlar Kurulu Kararnamesine göre kalıcı hale gelmiştir. Eh, ne diyelim, güle güle kullanalım. 🙂

Hazırlayan: Büşra Özşahin

Kaynak: Genel Astronomi, S.Karaali, 1999

Okumaya devam et

Dünya

Kitlesel Yok Oluşlar

• İçerik Üreticisi:

Bu yazıyı yaklaşık 7 dakikada okuyabilirsiniz.

Yine iç açıcı bir konuyla karşınızdayız. Bu yazımızda güzelim Dünyamızın belini büken, tam da yeni yeni türemeye ve yayılmaya başlamış  bazı türleri yok eden, bazılarını ise yeni baştan ve bambaşka şekillerde tekrar ortaya çıkmasına vesile olmuş “Kitlesel Yok Oluşlar”dan bahsedeceğiz.

Kitlesel Yok Oluş olağan dışı çok sayıda türün aynı anda ya da sınırlı bir zaman dilimi içinde ortadan kalktığı Dünya tarihi dönemlerine denir.

Dünya üzerinde canlı yaşamı baş gösterdiğinden beri farklı farklı türler güzel gezegenimize varlıklarıyla renk katmıştır. Fakat ne yazıktır ki bazı türler, daha modern insan olan Homo Sapiens ile bile tanışamadan tarih sahnesinden silinmiştir. Bunların sebepleri ise davetsizce gezegenimize yönelip atmosferin yok edemeyeceği kadar büyük olduğu için Dünya’ya çarpan çok büyük “meteoroid”ler olabileceği gibi, Dünya atmosferindeki değişimler gibi uzun süreli doğal felaketler de olabilir. Meteor çarpması ile kısa sürede gerçekleşen yok oluş, atmosferik sebeplerle olursa çok milyon yılları kapsayabilir.

  • Kretase – Tersiyer Yok Oluşu

O devasa ve korkunç dinozorların günümüzde sadece çocukların elindeki sevimli oyuncaklardan ibaret olması 66 milyon yıl önce yaşanan Kretase yok oluşuna bağlanmaktadır. Bu felaketin sebebinin, tam olarak kanıtlanamamış olmakla birlikte Meksika’nın Yucatan bölgesine düşen bir meteor olduğu düşünülmektedir. Bu meteorun çapı 10 km ve meydana getirdiği kraterin çapı da yaklaşık 180 km genişliğindedir.

Bu yok oluş öyle devasa boyutlardaydı ki yeryüzü evrelerinden Mezozoik dönemi bitirmiş ve Senozoik dönemi başlatmıştır. Mezozoikin son zamanı Kretase, Senozoikin ilk zamanı Tersiyerdir. Yeryüzünün 200 milyon yıldır en baskın canlıları olan dinazorlar ve bir çok sürüngen türü tarihe karışmıştır.

Ayrıca ilkel kuşların bir çoğu, bir çok omurgasız deniz canlısı ve plankton türlerinin çoğu da tarihin tozlu raflarında yerini almıştır. Kara bitkilerinin %35’i, tüm canlı türlerinin ise yaklaşık %70’i bu felaketten paçayı sıyıramamıştır. Çiçekli bitkililer, kertenkele, yılan ve timsah gibi sürüngenlerin yanı sıra bazı küçük ilkel memeliler bu felaketten kurtulmayı başarmışlardır.

Ayrıca bu felaket ile aynı zamanlarda faaliyete geçen (göktaşının etkisi ile olsa gerek) Hindistan’daki bir yanardağın atmosfere yaydığı gazların da yıkıma katkısı olduğu tahmin edilmektedir.

Bahsi geçen göktaşı beraberinde, dünyada çok nadir bulunan İridyumdan bol miktarda getirmiştir.

  • Permiyen – Triyas Yok Oluşu

Bazı çevrelerce “Büyük Ölüm” ya da “Büyük Yok Oluş” olarak da adlandırılır. 251 milyon yıl kadar önce meydana gelmiş Paleozoik ve Mezozoik dönemlerin haricinde Permiyen ve Triyas jeolojik dönemleri arasında geçisi başlatan bir kitlesel yok oluş olayıdır. Bu yok oluş olayı sayesinde karadaki omurgalı türlerinin %70’i, tüm türlerin ise %96’sı yok olmuştur. Dünya’da meydana gelen en şiddetli yok oluş olarak bilinir.

Bir diğer özelliği de böceklere etki eden tek yok oluş olayı olmasıdır. Bazı ailelerin %57’si yok olurken tüm cinslerin ise %83’ü ölmüştür. Bu olay biyoçeşitliliğe büyük bir darbe vurmuş, Dünya’nın kendine gelmesi, üzerindeki yaşamın kendini toparlaması diğer yok oluşlara kıyasla daha uzun sürmüştür.

Bu yok oluşun gerçekleşmesi milyonlarca yıl sürmüştür. Nedenlerine dair çeşitli teoriler ortaya atılmıştır. Bu teorilerden birine göre, daha önceden yavaş yavaş gerçekleşmeye başlayan bazı çevresel değişimlerin yanı sıra, aynı dönemlere denk gelen bir yıkımsal felaketin yok oluşu hızlandırdığı düşünülmektedir. Bu yıkımsal felaket, bol miktarda meteorun çarpması, bazalt seli patlamaları, denizlerdeki oksijenin oranının değişikliği, deniz seviyesinin gerilemesi, volkanik patlamalar veya bunların birden fazlasının birlikte görülmesi olabilir.

Küresel soğuma bu yok oluşu açıklamak üzere önerilen diğer  görüşlerden biri. Gondvana kıtası üzerindeki buzullaşmanın Ordovisyen ve Devoniyende olduğu gibi yok oluşa neden olmuş olabileceğini ileri süren bilim adamları da var. Yaygın buzullaşma, deniz seviyesinde bir düşüşe, küresel soğumaya ve iklimsel değişimlere yol açarak yok oluşa neden olmuş olabilir.

Bugün dünya üzerinde yaşamını sürdüren tüm türler, Permiyen-Triyas yok oluşundan kurtulabilen %4’lük kısımda olan türlerden türemiştir.

  • Geç Devoniyen Yok Oluşu

359 milyon yıl önce Dünya üzerindeki tüm türlerin üçte ikisi, Devonian’ın Geç Devoniyen Kitlesel Yok Oluşu ile yok oldu. En yaygın görüşe göre tek bir olay ile değil de milyonlarca yıllık bir dizi felaketten sonra bu yok oluş gerçekleşmiş olabilir.

En kötü etkilenenler sığ denizlerdeki yaşam türleriydi. Resifler,  yeni mercan türleri 100 milyon yıl sonra ortaya çıkıncaya kadar eski ihtişamlarına geri dönmemek üzere kayboldu. Aslında, deniz yatağının büyük kısmı neredeyse oksijensiz kalmış, bakteriler haricindeki canlılar için yaşanabilir olmaktan çıkmıştı. Deniz seviyesinde meydana gelen değişiklikler, asteroid etkileri, iklim değişikliği ve toprağa karışan yeni tür bitkiler bu yok oluşlardan sorumlu tutuldu.

  • Ordovisyen – Silüryen Yok Oluşu

Dünya tarihinin üçüncü en büyük yok oluşu olan Ordovisiyen-Silüriyatik kitlesel yokoluş, gerçekleştiği yüzbinlerce yıl içerisinde iki kere yok oluşlar açısından tavan yapmıştı. Ordovisyen dönem sırasında yeryüzündeki hayatın çoğu suda yaşıyordu. Bunlar trilobitler, brachiopodlar ve graptolitler gibi deniz canlılarıydı.

443 milyon yıl önce vuku bulan bu yok oluştan dolayı toplamda, deniz hayatının yaklaşık %85’i yok oldu. Yaşanan bir buzul çağının yok oluşlardan sorumlu olduğuna dair görüşler ağırlıkta. Bu görüşe göre güney yarımkürede büyük bir buz tabakası, iklim değişikliğine ve deniz seviyesinde bir düşüşe neden oldu, böylece okyanusların kimyası da haliyle alt üst oldu.

  • Triyas – Jura Yok Oluşu

Triyas döneminin son 18 milyon yıllık döneminde, ikiye katlanan etkileri ile Trias-Jura kitlesel yokoluş olayını yaratan iki veya üç aşamalı yok oluş vardı. İklim değişiklikleri, sel felaketleri ve bir asteroid etkisi bu yaşam kaybından sorumlu tutuldu. Çok sayıda deniz sürüngenleri, bazı büyük amfibiler, resifleri oluşturan bir çok canlı ve çok sayıda yumuşakça da dahil olmak üzere pek çok hayvan öldü. O dönemde hayatta olan bütün türlerin yaklaşık yarısı yok oldu. Garip bir şekilde, bitkiler o kadar da etkilenmemişti.

Yazının bundan sonraki kısmı toplumsal mesaj içerir… 🙂

Bunca felaketten sağ çıkabilmiş türler ve onların torunları olarak güzel dünyamızı tüm canlı türlerine ait bir yer olarak görelim. Hayvanları ve doğayı sevelim, sevelim sevilelim… Bilimle ve Sevgiyle kalın…

Hazırlayan: Hakan Cibelik

Kaynakça:

1) Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH (2000). “Pattern of Marine Mass Extinction Near the Permian–Triassic Boundary in South China”. Science 289(5478): 432–436.
2) Erwin, D.H (1993). The Great Paleozoic Crisis: Life and Death in the Permian. New York: Columbia University Press.
3) Benton M J (2005). When life nearly died: the greatest mass extinction of all time. London: Thames & Hudson.
4) Sahney S and Benton M.J (2008). “Recovery from the most profound mass extinction of all time” (PDF). Proceedings of the Royal Society: Biological 275 (1636): 759–765.
5) Labandeira CC, Sepkoski JJ (1993). “Insect diversity in the fossil record”. Science 261 (5119): 310–315.
6) Sole RV, Newman M (2003). “Extinctions and Biodiversity in the Fossil Record”. Encyclopedia of Global Environmental Change, The Earth System – Biological and Ecological Dimensions of Global Environmental Change (Volume 2). New York: Canadell JG, Mooney, HA. s. 297–391
7) Yin H, Zhang K, Tong J, Yang Z, Wu S. “The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary”. Episodes 24 (2): 102–114.
8) Yin HF, Sweets WC, Yang ZY, Dickins JM (1992). “Permo-Triassic events in the eastern Tethys–an overview”. Sweet WC. Permo-Triassic events in the eastern Tethys: stratigraphy, classification, and relations with the western Tethys. Cambridge, UK: Cambridge University Press. ss. 1–7
9) Tanner LH, Lucas SG & Chapman MG (2004). “Assessing the record and causes of Late Triassic extinctions” (PDF). Earth-Science Reviews 65 (1–2): 103–139.
10) http://www.bbc.co.uk/nature/extinction_events/

Okumaya devam et

Çok Okunanlar