Connect with us

Fizik / Astrofizik

Evrendeki Temel Kuvvetler

Bu yazıyı yaklaşık 10 dakikada okuyabilirsiniz.

Modern fizikteki “kuvvet” algısı, temel parçacıkların birbirleriyle etkileşim mekanizmalarının nasıl olduğunu konu alır. Parçacıkların emisyon veya absorbsiyon yapmaları, saçılmaları, bağlar kurmaları temel kuvvetler sayesinde olmaktadır.

Temel kuvvetler olmasaydı evren de tabi ki daha basit bir evren modeli gerektirirdi; galaksiler, yıldızlar, gezegenler oluşamazdı. Yaşam, yani biyoloji olmazdı çünkü bunu sağlayacak olan kimyasal yapılar da olamayacaktı.Kimyasal bileşikler de fiziksel yapılar bildiğimiz haliyle varolmayacağı için var olamayacaklardı. Elektronlar atomlara bağlanamayacak, quarklar bir araya gelip proton ve nötronları oluşturamayacak, atomlar olmayacak, temel tanecikler eğer var olacaklarsa birbirlerinin içinden hiçbir şey olmamış gibi geçip gideceklerdi.

Kısaca modern fizikteki 4 temel kuvvet; elektromanyetik kuvvet, güçlü nükleer kuvvet, zayıf nükleer kuvvet ve kütleçekim kuvveti evrenimizin bugünkü halinde olmasında hayati derecede öneme sahipler.

Magnetic-Field

Elektromanyetik kuvvet

Yakından tanıdığımız bir kuvvet olan elektromanyetik kuvvet, bilindiği üzere (+) ve () yüklü parçacıklar arasında olmakta. Bilim insanları daha atomu bulmadan önce, 18.yy’da elektromanyetizmanın etkilerini görüp bunu araştırmaya başlamışlardı.

Yükler arasındaki etkileşimi 1785’te fransız fizikçi Charles Coulomb‘un fiziğe kazandırdığı ünlü Coulomb yasası ile bilmekteyiz. 1819’da ise Danimarkalı fizikçi Hans Oersted elektrik ve manyetizmanın aslında birbirleriyle alakalı olduğunu, elektrik akımının manyetik alan yarattığını keşfediyor.

1839’a gelindiğinde İngiliz fizikçi Michael Faraday elektromayetizma ile uğraşıyor ve manyetizmayı kullanarak elektrik üretilebileceğini söylüyor. 1860’larda İskoç fizikçi James Clerk Maxwell elektrik ve manyetizmanın birbirleriyle ilişkisini gösteren denklemleri ortaya çıkarıyor. Son olarak ise 1892 yılında hollandalı fizikçi Hendrik Lorentz elektromanyetik alan içerisindeki yüklü bir parçacığa etki eden kuvveti hesaplıyor.

tinytesla-desktop-musical-tesla-coil-by-onetesla

Fakat bu yasalar sadece elektromayetik etkileşimi göstermekteler, işleyiş sistematiğini açıklamamaktalar.

Fizikçiler 20.yy’ın başlarında atom altı dünyayı araştırmaya başladıklarında elektromanyetik kuvvetin parçacıklarla da etkileşimini görmeye başladılar. Protonların, elektronları atomların yörüngesinde tuttuğunu, bir atomun elektronunun başka bir atomun çekirdeğinin etkileşim alanına girdiğinde atomların birbirleriyle bağ kurduğunu (kovalent bağ, iyonik bağ) anladılar.

Hem atomik seviyede hem de sonsuz uzaklıklarda etkisinin görülebildiği bu kuvvetin fotonlar vasıtasıyla taşındığını düşündüler. Elektromanyetik etkileşimin atomik seviyede yani kuantum fiziğinde nasıl etkileşim gerçekleştirdiğini açıklamaları yeni bir fizik alanı daha doğmasını sağladı. Elektromanyetik kuvvetin temel parçacıklar arasındaki etkileşimine bakan, yani kuantum fiziğinde işleyişini açıklamaya çalışan alana kuantum elektrodinamiği denmekte.

Elektromanyetik kuvvetin taşıyıcısı kütlesiz parçacık foton olduğu için, etkileşimi sonsuza uzanır. Peki bu kuvvetin önemi ne derseniz, atomları ve molekülleri bir arada tutmaya yarıyor. Daha doğrusu parçacıklar elektrik yükleri yani şarjları nedeniyle birbirlerini bu kuvvet vasıtasıyla itiyor veya çekiyorlar. Güçlü ve zayıf nükleer kuvvetlerin etki mesafelerinin çok kısa olmaları nedeniyle, atomların yapılarında (elektronların bağlanmasında) ve moleküllerin bağ yapılarında elektromanyetik kuvvet baş roldedir.

Atom çekirdeğinin iç yapısı ile ilgili soruları cevaplamak için ise tek başına yetersiz kaldığından dolayı ilerleyen yıllarda başka kuvvetler de keşfediliyor.

Güçlü Nükleer Kuvvet

1935 yılında Japon teorik fizikçi Hideki Yukawa protonların ve nötronların birbirleriyle etkileşimlerini açıklamak için bir parçacığın proton ve nötronlar arasında güç iletimi görevi gördüğünü ve parçacıkların bu şekilde birbirleriyle etkileşime girdiklerine dair makale yazıyor. Teorize ettiği parçacık bugün bilnen adıyla ‘pion’ ve 1947 yılında bu parçacık keşfedildiği için 1949 yılına gelindiğinde Nobel Fizik Ödülü Yukawa’ya veriliyor.

Hikayesi bu şekilde başlayan güçlü kuvvet, atomun çekirdeğinde aynı yükte oldukları için birbirlerini itmeleri gereken protonların bağlanıp bir arada -oldukça yakın- bir şekilde durabilmelerini de sağlar. Çekirdek bozunumlarında da yine güçlü kuvvetin etkisi görülmekte. Etki mesafesi ise oldukça sınırlı; 1 femtometre kadar yani 10^-15 metre(daha uzağında hissedilememekte). Parçacıklar bu mesafeden daha fazla birbirlerinden uzaklaştırıldıklarında güçlü kuvvet etkisini yitirdiği için eğer aynı yüktelerse (protonların hepsi (+) yüklü) ayrılmakla kalmayıp birbirlerini elektromanyetik kuvvetin etkisiyle itmeye başlıyorlar.

Gluon

Elektromanyetik kuvvet de çok güçlü olmasına rağmen aynı yükteki parçacıkları birbirlerine neredeyse değecek kadar yakında tutmayı başarabilen bu kuvvet, atomu nükleer fizyon ile parçaladığımızda, yani protonları birbirlerinden ayırmayı başardığımızda enerji olarak salınıyor. İşte bu kadar güçlü!

Temel taneciklerden biri olan vektör gauge bozonu gluonlar tarafından taşınıyor. Basitçe fotona benziyor diyebiliriz ama üç farklı yükü var. Örneğin elektromanyetik kuvvetin (+) ve (–) diye iki yükü vardı. Güçlü kuvvetin yükleri ise kırmızı, yeşil ve mavi olarak adlandırılmakta. Fotonlar gibi kütlesiz olmalarına rağmen kendi aralarında etkileşime girebiliyorlar. Bu nedenle etki mesafesi kısalıp 10^-15 metre seviyesine düşmekte. Fotonlar ise kendi aralarında etkileşime girmedikleri için (bir foton başka bir fotonun içinden çarpışmadan geçip gider) etkileşim mesafesi sınırsız olmaktaydı.

Zayıf Nükleer Kuvvet

Atom çekirdeklerindeki radyoaktif bozunmalardan biri olan beta bozunumu gibi süreçlerde ve nötrino etkileşimlerinde görülen bu kuvvetin etki mesafesi 10^-18 metredir. Yani protonun boyutunun %1’i kadar mesafede etkili.

Çekirdekte meydana gelen beta emisyonunda bir nötron proton’a dönüşür/bozunur ve bu sırada çekirdekten dışarıya elektron anti-nötrinosu ve elektron saçılır. -Bu saçılan elektrona beta parçacığı denilmekte.- Bu dönüşüm için gerekli güç, güçlü kuvvetten 10^-7 kat daha azdır, bu nedenle adına zayıf nükleer kuvvet veya kısaca zayıf kuvvet denir. Biraz talihsiz bir adı var çünkü kuvvetin etkileri pek de zayıf değil.

NeutronDecay

1983 yılında quarkların keşfedilmeleriyle birlikte, -zayıf kuvvet-in W ile Z bozonları vasıtasıyla quarkların birbirlerine dönüşmesinden de sorumlu olduğu bulunuyor. Proton ile nötronu birbirlerinden ayıran şeyler yapılarındaki quarkların farklı olması. Proton 2 yukarı 1 aşağı quarktan oluşurken, nötron 2 aşağı 1 yukarı quarktan oluşmakta. Zayıf kuvvetin protonun içindeki 1 yukarı quarkı aşağı quarka dönüştürmesi, protonun nötrona dönüşmesini sağlıyor.

Zayıf nükleer kuvvet hidrojenin izotopu döteryumun oluşmasını da sağladığı için yıldızların nükleer füzyon yapabilmelerini sağlıyor. Eğer hidrojenler zayıf kuvvet vasıtasıyla döteryumlara dönüştürülemeseydi nükleer füzyon meydana gelemeyecekti. Benzer şekilde fosfor atomundaki 1 nötron zayıf kuvvetin etkisiyle protona dönüşür (nötronun içindeki aşağı quarklardan biri yukarı quarka dönüşmekte) ve bunun sonucunda proton sayısı yani atom numarası 1 artan fosfor atomu kükürt atomuna dönüşmüş olur.

main-qimg-aa26ef9d58c54e40903d37676cfe8a35

Zayıf kuvvet’in 10^-18 metre gibi çok kısa etki mesafesi olmasının nedeni, kuvveti taşıyan parçacıkların, yani W ile Z bozonlarının kütlelerinin 80-91GeV gibi yüksek değerlerde olmalarından kaynaklanıyor.

Zayıf kuvvet quarklar haricinde leptonların yani elektron, muon, tau ve nötrinoların etkileşimlerde de rol oynuyor. Güçlü kuvvet leptonlara etki etmemekte, elektromanyetik kuvvet ise nötrinolar gibi yüksüz parçacıklara etki etmemektedir. Fakat bütün bu parçacıklar zayıf kuvvet ile etkileşime girdikleri için, kuvvetler arasındaki teorik bağlantı sağlanabiliyor.

Kütle çekim Kuvveti

Etkisini ilk hissettiğimiz ve ilk olarak üstünde düşünülen kuvvet, kütle çekim kuvvetidir. Romalılar M.Ö. 218 yılında Sicilya’yı kuşattıklarında şehri bir türlü ele geçiremiyorlardı. Çünkü o şehirde Arşimet vardı ve fırlatılan cisimlerin yerçekimi etkisi altında nasıl davranacağını çok iyi bilen bir mühendisti. Şehrin duvarlarına kör nokta olmayacak şekilde yerleştirttiği, kuşatma donanmasının yaklaşmasını engelleyen mancınıklar vardı. Aylar sonra artık kazandıklarını sanıp duvarlardaki görevlerini aksatıp eğlenmeye başlayan askerlerin gafleti, şehri Romalıların ele geçirmesini sağladı ve Arşimet bu sırada öldürüldü.

Yüzyıllar sonra sahneye Isaac Newton çıktı. Arşimet’e çok şey borçu olan bu İngiliz fizikçi, 1689 yılında kütle çekimini iki cismin birbirleri ile etkileşmelerini sağlayan bir kuvvet olarak düşündü ve bu sayede etkileşim ilk kez denklemleştirebildi. İki cismin arasındaki etkileşim kuvvetinin kütleleri ve aralarındaki mesafenin karesiyle ters orantılı olduğunu buldu. (F=G*(m1*m2)/r²)

Newton’un bulduğu bu yasa insanlığın Ay’a gidebilmesini sağladı. Fakat Newton’un teorisi bir şeyi açıklayamıyordu; mesela Merkür’ün yörüngesini..Diğer gezegenlerin yörüngelerinde işe yarayan bu teori Merkür’e bakıldığında tutarsızlaşıyordu. (Aslında açıklayamadığı daha büyük bir soru vardır; kütle çekiminin nasıl etkileşim kurduğu…)

maxresdefault

1915 yılında Alman fizikçi Albert Einstein, Newton’un yerçekimi teorisinin yüksek çekim alanı olan yerlerde ve yüksek hızlarda oldukça tutarsız sonuçlar verdiğini gördü. Genel görelilik teorisi adı altında, kütle çekimini çok farklı bir şekilde yorumladı. Uzayı kütle tarafından eğilen ve zaman ile bağdaşık bir ortama dönüştürdü. Yüksek kütle çekiminin olduğu yerde uzay-zaman fazlaca eğildiği için oradan geçmekte olan başka bir cismin yörüngesinin bundan etkileneceğini, farklı bir yol izleyeceğini söylüyordu. Sıradışı olan bu yorum, ilginçtir ki denklemlerde Merkür’ün yörüngesindeki salınımı kesinlikle açıklayabiliyordu. Newton’un çekim yasaları ise düşük kütleçekimi ve düşük hızlarda Einstein’ın genel görelilik teorisinin bir yaklaşımı olarak varlığını korudu.

Yıldızlar ve gezegenler gibi çok yüksek kütleli cisimlere baktığımızda kütle çekimini oldukça güçlü bir kuvvet olarak görüyoruz. Fakat atomik seviyeye indiğimizde etkisi çok azalıyor. Çünkü atomik seviyede parçacıkların kütleleri çok az. Bu seviyelerde karşımızda en güçsüz kuvvet olarak gözükmekte.

Eh o zaman, Einstein’ın genel görelilik teorisi bir çok şeyi çözdü diye düşünebiliriz; fakat şöyle bir sıkıntımız var. Genel görelilik teorisi bir çok şeyi açıklayan ve iyi cevaplar veren bir model ama kütle çekimi veya kütle çekim kuvveti nihayetinde uzay-zamanı büken bir güç. Dolayısıyla diğer temel kuvvetlerde olduğu gibi kuantum fiziğinde bu kuvvetin de bir taşıyıcı parçacığı olması gerekiyor mantıken. İşte bu parçacığa graviton denilmekte. Fakat graviton diğer parçacıklar gibi deneysel olarak henüz gözlenememiş, belki de gözlenemeyecek olan teorik bir parçacık. Günümüzde bu konuyla ilgili bir çok farklı teori üzerinde çalışılmaktadır.

İlginçtir ki etkisini ilk hissetiğimiz kuvvet olan kütle çekim kuvveti, 4 temel kuvvet arasında en az anlayabildiğimiz kuvvet olmuştur. Kütle çekim kuvvetinin doğasını kavrayabilmek için yapılmakta olan çalışmalar sicim teorisi gibi alanları doğurduğu gibi, fizikçiler kütle çekim kuvveti dışında kalan 3 kuvveti bir arada açıklama girişimi olarak büyük birleşik teoriler (grand unified theories) üzerine de çalışmaktalar. Kütle çekim kuvveti de bunlara katıldığı zaman süper birleşik teori (superunified theories) diye isimlendiriliyor. Fakat bu teoriler henüz spekülasyondan öteye gidememekte, çünkü kütle çekim kuvveti gizemini hala korumakta.

temel kuvvetler

Stadart Modeldeki temel parçacıklar

 

Yukarıdaki grafikte standart modeldeki temel parçacıklar gösterilmekte. Kırmızı ile belirtilmiş olan Gauge bozonlarına güç taşıyıcıları deniliyor. Yani yazıda anlattığımız temel kuvvetler (kütle çekim kuvveti hariç) bu 4 parçacık tarafından taşıyor.

  • Gluon; güçlü kuvveti taşıyan parçacık. Quarkları bir arada tutmakta. Lepton grubundaki parçacıklara ise etki etmiyor.
  • Foton; elektromanyetik kuvveti taşıyan parçacık. Şarjı sıfır olmayan yani yüklü parçacıklar ile etkileşime giriyor.
  • Z ile W bozonu; zayıf kuvveti taşıyan parçacıklar. Quarkların birbirlerine dönüşmelerinde rol oynuyor. Leptonlar ile de etkileşime giriyor.
  • Higgs bozonu: foton ve gluon haricindeki temel parçacıkların kütleli olmalarını sağlıyor. Kütle çekim kuvveti ile bir alakası yok. Temel parçacıklar dışındaki (proton, nötron gibi) parçacıkların kütlelerinden de sorumlu değil. (detaylı bilgi için tıklayınız.)

Taylan Kasar

Kaynaklar:
http://science.howstuffworks.com/environmental/earth/geophysics/fundamental-forces-of-nature3.htm
http://hyperphysics.phy-astr.gsu.edu/hbase/forces/funfor.html

1 Comment

Leave a Reply

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Fizik / Astrofizik

Negatif Enerji ve Negatif Kütleli Madde Nedir?

• İçerik Üreticisi:

Bu yazıyı yaklaşık 3 dakikada okuyabilirsiniz.

Negatif enerji ve negatif kütle, özellikle “warp sürüşü” veya “solucan deliği” gibi kavramların konuşulduğu ortamlarda sıklıkla dile getiriliyor.

Bu kavramların gerçekliği her ne kadar tartışmalı olsa ve bilim insanlarının büyük kısmı tarafından spekülasyon olarak görülse de, ne olup olmadıklarını açıklamak gerektiğini düşündük.

Negatif Kütleli Madde

Negatif kütleli madde denildiğinde çoğumuzun aklına Antimadde ya da Karanlık Madde geliyor. Ancak, bunlarla karıştırmayınız. Teorik fizikte, negatif kütle sahibi madde, 0 ağırlıktan daha düşük kütleye sahip, “hiçbir şeyden daha hafif” diye tabir edebileceğimiz ve kütle çekimi tarafından çekilmeyen tersine itilen spekülatif bir egzotik maddedir.

Bir ya da daha fazla enerji durumunu ihlal eder. Bir tartı üzerine koyarsanız tartıya ters basınç uygular ve -10 kg gibi bir sonuç görürsünüz. Eğer evrende negatif kütleli egzotik madde çeşitleri varsa, gezegenlerin, yıldızların hatta galaksilerin kütle çekimleri tarafından çok uzaklara itilmiş ve belki de hiçbir zaman ulaşamayacağımız galaksiler arası derin uzayda bulunuyor olabilirler.

Peki fizik kanunlarını ihlal ediyorsa nasıl gerçek olabilecekmiş gibi konuşabiliyoruz? Böyle bir şeyin bizim evrenimizde bulunmaması gerekmez mi? Katı haldeki negatif kütleli madde, ancak “mükemmel sıvı” diye tabir edilen bir halde negatif kütle sahibi maddede bulunabilir.

Kanada, Montreal Üniversitesi’ndeki kozmologlar Saoussen Mbarek ve Manu Paranjape mükemmel sıvı haldeki negatif kütle sahibi bir maddenin hiçbir enerji durumunu ihlal etmediğini açığa çıkardı. Gereken tek şey, bu maddeyi Big Bang esnasında üretmiş olabilecek bir mekanizma. Kısacası şu anda böyle bir maddenin gerçekliğini ne inkar edip imkansız diyebilecek ne de onaylayabilecek bir durumdayız.

Negatif enerji

Negatif enerji, adından da anlaşılacağı üzere eksi değerleri olan enerji seviyelerine denir. Karanlık Enerji ile karıştırmayınız. Tamamen kuramsal olan negatif kütleli madde, aksine negatif enerji çeşitli kuantum durumlarında stabil olmayan şekilde mümkün olabiliyor.

Bununla birlikte karakteristik olarak negatif enerjiye oldukça benzeyen ancak negatif enerji sayılmayan ve çok küçük ölçeklerde gerçekleşen Casimir etkisinden de bahsedelim. 1933’te Hendrik Casimir, Kuantum Teorisi’nin kanunlarını kullanarak garip bir öngörüde bulundu. Casimire göre; (alttaki resimde görülen) vakum içerisindeki iki adet paralel, yüksüz metal plaka birbirlerini itecekti.

Normalde yüksüz olan bu plakaların sabit durması gerekmekteydi ancak bu iki plaka arasındaki vakum boş değildi, gerçekliğe giriş, çıkış yapan sanal parçacıklar ile doluydu. Bu noktada sanal parçacıklarla ilgili yazımıza göz atmanız faydalı olacaktır. (Bkz. Belirsizlik ve Kuantum Dalgalanmaları)

Bu vakum, çok kısa ömürlü elektronların ve pozitronların ortaya çıkıp birbirlerini imha ederek yok olduğu kuantum aktiviteleri ile doludur. Normalde bu yoktan var olan ufak madde-antimadde olayları Enerjinin Korunumu Kanunu’nu ihlal ediyor gibi görünse de; belirsizlik ilkesi sebebiyle bu küçük patlamalar inanılmaz ölçüde kısa ömürlü olup, net enerjide değişikliğe sebep olmamaktadır. Böylece Casimir bu kısa ömürlü olayların plakalar arası vakumda bir basınç yaratacağını ve bu basıncın plakaları iteceğini keşfetti. Normalde bu plakalar birbirinden uzakken bu etki gerçekleşmezken, plakalar yaklaştırıldıkça aralarında bu enerji açığa çıkmaya başlar.

Bu enerji 1948’de laboratuvarda, Casimir’in öngördüğü gibi gözlemlendi. Bu enerjiyi ölçmek için inanılmaz hassas ve sanat eseri sayılabilecek ekipman gerektiğinden, 1996’da ilk hassas ölçüm yapıldığında bu etkiden kaynaklanan basıncın bir karıncanın ağırlığının 30 binde 1’i kadar olduğu bulundu. Tahmin ettiğiniz gibi uzay-zamanı bükmek için çok yeterli değil.

Negatif enerjiye başka bir örnek de, kara deliklerin buharlaşma sürecinde açığa çıkan ve Hawking radyasyonu mekanizması sırasında oluşan kısa ömürlü sanal parçacıklar verilebilir.

Hazırlayan: Berkan Alptekin

Okumaya devam et

Fizik / Astrofizik

Hologram Evren Kavramı Ne Anlama Geliyor?

• İçerik Üreticisi:

Bu yazıyı yaklaşık 6 dakikada okuyabilirsiniz.

Yaşadığımız evrenin aslında bir hologram olduğu söylemi son yıllarda fizik ile ilgili ortaya çıkan en büyük yanlış anlamalardan birine sebep olmakta. Bu yazıda konuda geçen kavramları ele alacağız, fizikçiler aslında ne demek istiyor onu açıklayacağız.

Hayır evrenimiz hologram değil. Bu sözcük evrenin olması gerektiği düşünülen bazı özelliklerini tanımlamak için kullan bir metafor. Bilimkurguda rastladığımız “bir simülasyonun içinde yaşama” eylemini sağlayan hologramla ilgisi yok. Bunu netleştirelim ve konunun bel kemiğini oluşturan Holografik İlke aslında ne demek ona bakalım.

Holografik İlke

Öncesinde başka bir konuya, entropiye bakmamız gerekiyor. Bir kara deliğin olay ufku sınır kabul edilir ve entropisi olay ufku yüzey alanının 4’e bölünmesiyle bulunur. Evrende, içinde madde barındıran, kara delik dışında bir bölge düşünün. Bu bölgenin kara deliğe benzer bir şekilde toplam entropisinin bir limiti var mıdır?

Biraz düşünecek olursak; eğer bu bölgenin içine madde eklemeye başlarsak bölgenin entropisini arttırırız. Fakat madde eklemeye devam ederken belli bir noktadan sonra o bölgede o kadar çok madde birikir ki, sonunda bu bir karadelik oluşturur.

Yani evrende bir bölgenin entropisini sonsuza kadar arttıramıyoruz. Limit var; çünkü entropi arttırmak için aynı hacime daha çok madde eklemek eninde sonunda kara delik oluşturuyor. Dolayısıyla evrende bir bölgede olabilecek en yüksek entropi nedir diye merak ediyorsak; o bölgenin yüzey alanının 4’e bölmemiz gerekiyor. (sanki kara deliğin entropisini ölçüyormuş gibi)

Entropiye aslında bir bilgi ölçeği de diyebiliriz. Evrendeki her madde, her parçacık, her dalga bilgi, yani enformasyon taşır. Bir yerde ne kadar çok madde varsa, o kadar çok bilgi vardır, dolayısıyla entropi o kadar yüksektir. Bu çıkarım bir fiziksel ilke, yani uymak zorunda kalınan bir kural. Holografik ilke adı verilen bu kural kısaca demekte ki; bir miktar hacmin içerisindeki bilgi miktarı, o hacme tanımlanan toplam bilgi miktarını geçemez.

Fizikte ilke/prensip adı altında geçen tanımlamalar, bir konuyla ilgili teorileri formülize etmek için kullanılır. Holografik ilke ise, Kuantum yerçekimi teorisini oluşturabilmek için kullanılması gereken bir ilkedir. Kuantum yerçekimi teorisi oluşturmak için işe koyulduysanız, bulduğunuz teori ya bu ilkeye uymak zorunda, ya da bu ilkeyi ihlal ediyorsa neden ihlal ettiğini çok iyi açıklayabilmek zorunda. Yoksa, teoriniz tutarsız olur.

Yapısı gereği deneysel olarak test edilebilecek tahminlere sahip olmayan bu gibi bilimsel ilkeler, belirli bilimsel teorileri oluşturmak için kullanılırlar yukarıda belirttiğimiz gibi. Dolayısıyla, prensibin tek başına varlığı, evrenin hologram olduğu veya evrenin bu prensibe gerçekten uyduğu anlamına gelmez.

Evrenin Holografik ilkeye uyup uymadığı ifadesi ise test edilmesi gereken bir önermedir. Fakat bunun yapılabilmesi için önce işe yarar, çalışan bir kuantum yerçekimi teorisi oluşturmak gerekiyor.

Dolayısıyla, eğer biri size evrenin hologram olduğundan bahsediyorsa, o kişinin aslında neyden bahsettiği hakkında bir fikri olmadığı söylenebilir. Medyada son zamanlarda çokça ortaya çıkmaya başlayan evrenin hologram olduğu kanıtlandı benzeri haberler de benzer bir şekilde yanıltıcı ifadelerle son zamanlarda yapılan çalışmaları anlatmaya çalışıyor.

The Matrix, hologram kavramının ötesinde, dijital sanal bir evren tasvir eder.

Bu haberlerin yapıldığı makaleler aslında biri AdS diğer CFT adında iki gerçek olmayan teorinin bağlantısını ifade eden AdS/CFT konjektürü adlı matematiksel tanımlamaya dayanmakta ve bu, yaşadığımız evren ile ile ilgili bir şey de söylememekte.

Konuyu genel hatlarıyla anlayabilmeniz için bu iki karışık matematiksel teorinin detaylarını bilmeniz gerekmiyor merak etmeyin. Sadece uzayı farklı şekilde tanımlayan iki farklı matematiksel modelin olduğunu ve bu ikisinin birbirleriyle ilişkisinin üzerine çalışıldığını söylüyorum. Aşağıda iki teoriye de kısaca değineceğim.

O zaman neden bu AdS/CFT’ye ihtiyaç duyuluyor?

Yukarıda anlattığımız holografik prensip sadece sözlerden oluşan bir şey ve sözler keskinlik konusunda iyi değillerdir, hesaplanamazlar. Fizikçiler düşünceleri matematiksel denklemler halinde yazmayı severler, böylece bahsedilen şeyin niteliği ve niceliği analiz edilebilir olur.

AdS/CFT konjektürü de bu şekilde holografik prensip’e dayanan matematiksel bir modeldir. Fakat bu matematiksel model gerçek değil yani bizim evrenimizi tanımlamıyor. Peki madem gerçek değil, o zaman neden üzerinde çalışıyor?

Fizikte “Oyuncak Teori” olarak da bilinen bir kavram bu. Gerçek olmadığı bilindiği halde bu gibi teorilerin üzerinde çalışılmasının iki nedeni var.

1 – Basit bir model olduğu için daha karmaşık ve gerçek olan modellerde yapılamayan hesaplamaları yapmaya olanak sağlamaları.

2 – Gerçekçi bir modelimizin olmadığı bir alanda, elimizdeki verilerle ne yapabildiğimize bakabilmek.

Peki o zaman AdS/CFT konjektürü bize ne anlatıyor? Teknik detayına girmediğimizde bunun sicim teorisinde tanımlanan D3-zarıyla uğraştığını söyleyebiliriz.

Bu zara iki farklı perspektiften bakılıyor. Bir perspektiften bakıldığında 5 boyutta (kuantum) yerçekimi teorisi gibi duruyor, buna AdS tarafı deniliyor. Diğer perspektiften yani CFT tarafından bakıldığında ise yerçekiminin dahil olmadığı 4 boyutlu teori gibi duruyor.

adc67216f99baacc75f599e955427160

Fakat zar aynı zar olduğu için, hangi perspektiften bakarsak bakalım aynı şekilde davranması gerekmekte. Yani aynı hesaplamaları 5 boyutlu teoride de 4 boyutlu teoride de yaptığımızda aynı sonuçları almalıyız.

Bir şeyin bu şekilde iki farklı tanımının olması, yani modelin ikili yapısı, hesaplamalar yaparken oldukça kullanışlı, faydalı oluyor. Hesaplanmak istenen şey eğer yerçekiminin dahil olduğu AdS tarafında hesaplanması çok zor ise, yerçekimsiz olan CFT teorisinde hesaplanarak bulunabiliyor.

AdS/CFT modeline konjektür yani varsayım sıfatını vermemin nedeni daha tam kanıtlanamamış olması. Fakat bu konjektürün doğru olabileceğine dair birçok veri var. Bunlar yukarıda anlattığımız gibi hesaplamaların iki farklı perpektiften de bakılarak yapılıp karşılaştırılmasıyla ve sonuçların tutmasıyla olmakta. Fakat sonuçların her zaman tutarlı olacağı henüz söylenememekte.

Bilim sitelerinde “fizikçiler evrenin hologram olduğuna dair kanıt buldular” diye haberlere rastladığınız zaman, o habere konu olan makalenin aslında demek istediği şey AdS/CFT konjektüründe tutarlı olan bir hesaplama daha bulunduğu. Fakat tekrar edelim, bu bizim evrenimizle ilgili bir şey söylememekte, sadece gerçek olmayan model hakkında daha yeni bir bilgi vermekte.

Modelin gerçek olmamasının nedenlerine gelecek olursak:

  • Model sırtını sicim teorisine dayamakta ve aslında sicim teorisi de “Oyuncak Teori” sınıfına girmekte. Sicim teorisi evrenimizi ile ilgili gerçek bir tanımlama yapmamakta. Sanal bir evren tanımı yapmakta ve bu evren bazı açılardan bizim evrenimiz ile benzerlikler taşıyor fakat bazı açılardan oldukça farklı.

  • Yerçekiminin de dahil olduğu perspektife AdS deniliyor çünkü bu evreni “Anti de Sitter” adında özel bir geometri ile tanımlıyor. Evrenimiz bu geometriye sahip değil. Hatta bunun tam tersi olan “de Sitter” ile tanımlanmış durumda. Dolayısıyla AdS bizim evrenimize bağlı bir tanım yapmıyor.

  • Yerçekiminin dahil olmadığı perspektif olan CFT ise evreni Conformal Simetri adında özel bir geometri ile tanımlıyor. Bu nedenle adı Conformal Field Theory/Conformal Alan Teorisi. Fakat evrenimiz hem conformal simetriye sahip değil hem de yerçekimi var. Dolayısıyla CFT de bizim evrenimize bağlı bir tanım yapmamakta.

Sonuç olarak; AdS/CFT konjektürü sanal bir evren modeli tanımlıyor ve bu tanımladığı evren bizim evrenimiz değil. Holografik ilkenin matematiksel bir karşılığı. Oldukça önemli olmasına ve teorik fizikte bir çok uygulama alanı olmasına rağmen bizim evrenimizle bir ilişkisi yok.

Yine de Holografik ilenin gerçek olmayan matematiksel bir modeli olan AdS/CFT çalışmaları, ileride bizim evrenimize de uygulanabilecek gerçek bir model için zemin hazırlamakta ve serimizin ilk yarısında belirttiğimiz gibi işleyen bir kuantum yerçekimi teorisi ortaya çıktıktan sonra holografik prensibin empirik olarak sınanmasının da önü açılacak.

Hazırlayan: Taylan Kasar

Konuyla ilgili diğer yazılarımız:
Evren bir simülasyon mu? – 1
Evren bir simulasyon mu? – 2

Okumaya devam et

Fizik / Astrofizik

Yıldızların Rengi ve Sıcaklığı Arasındaki İlişki

• İçerik Üreticisi:

Bu yazıyı yaklaşık 3 dakikada okuyabilirsiniz.

Yıldızların rengi ve sıcaklığı arasındaki ilişki bazen kafa karıştırıcı olabiliyor. Astronomi sitelerinde vakit geçirmeyi seven pek çoğumuz şu bilgi notuyla karşılaşmışızdır; ”Zannedilenin tersine mavi yıldızlar, kırmızılardan çok daha sıcaktır.” Peki ama neden?

Günlük yaşamımızdan da bildiğimiz üzere, ısındığı için ışık yayan cisimlerin yaydıkları ışığın rengi, cismin sıcaklığıyla ilgilidir (fluoresan ve led türü soğuk ışık kaynakları şu anki konumuz değil). Yıldızlar dahil olmak üzere, ısısı nedeniyle ışık yayan tüm cisimler aslında kara cisim ışıması yaparlar.

Örneğin kırmızımsı – turuncu renkte gördüğümüz elektrikli sobanın çubuklarının sıcaklığı 2.000 santigrat derece kadardır. Evlerimizde kullandığımız Edison tipi bir akkor ampulün içindeki flaman sarımsı ışık yayar. Bu flamanın sıcaklığıysa yaklaşık 3.000 derece civarındadır.

hand-holding-lit-lightbulb

Eğer bir cismi daha fazla ısıtabilirsek renginin giderek maviye döndüğünü görebiliriz. Bir odunu yaktığımızda, odunun bitişiğinde yanmakta olan ateş mavi renktedir. Yanan ateş, kaynağından uzaklaştıkça, alevi oluşturan partiküller soğuduğu için maviden kırmızıya doğru kayar. Bunu bir çakmak veya kibrit yaktığımızda da gözleyebiliriz.

Örneğin bir kibrit yanarken ateş, kaynağına en yakınken mavi renktedir. Fakat, kaynağından uzaklaşıp havadaki görece düşük sıcaklıkla karşılaştıkça yavaş yavaş sıcaklığını kaybeder, mavi renkten beyaza, beyazdan sarıya, sarı renkten de kırmızıya döner ve gözden kaybolur.

Tabi bu arada şunu belirtmek lazım; Dünya üzerinde gördüğümüz alevlerin rengini sadece sıcaklık belirlemez. Alevi oluşturan kimyasal madde de renge etki eder. Kibrit ve çakmak örneğinde mavi alevli kısım aslında 1.000 santigrat dereceden düşük sıcaklıkta olmasına rağmen mavidir, çünkü alevi oluşturan kimyasallar bu rengi yayarlar. Ancak, bunu göz ardı edersek, “öğretici örnekleme” açısından uygundur.

1010419_391319711014514_490058086_n

Türlerine göre yıldızlarının evrende bulunma oranları. Her 1 adet O-B sınıfı yıldıza karşı diğer yıldız türlerinden kaç tane olduğu. Şu makalemize de göz atabilirsiniz.

 

İşte yıldızlarda da durum buna çok benzerdir. Elbette yıldızlarda alev yoktur. Sıcaklık, yıldızın çekirdeğindeki nükleer reaksiyon sonucu alevsiz olarak oluşur. Daha başka bir deyişle, yıldızları ısıtan şey ateş değildir. Fakat bizler Dünya üzerinde sıcaklığın sadece “kimyasal bir reaksiyon olan” ateş ile oluştuğunu gözlemlediğimiz için, yıldızları da birer alev topu olarak düşünürüz. Bu, içine düştüğümüz bir yanılgıdır.

Sıcak yıldızların ışığı mavi, soğuk yıldızlarınkiyse kırmızıdır. Yıldızın rengini, çekirdek bölgesindeki nükleer reaksiyonun miktarı belirler. Büyük ve sıcak yıldızlarda bu reaksiyon çok fazla olduğu için yıldız da orantılı olarak o kadar fazla ısınır ve rengi de bununla bağlantılı olarak kırmızıdan maviye doğru (sırasıyla kırmızı, sarı, beyaz, mavi) değişir.

Burada kırmızı yıldızlara soğuk demekteyiz fakat soğuk değildirler, bu “göreli” bir tanımlamadır. Mavi renkli yıldızlar 30.000 santigrat dereceden fazla sıcak olabilirken, kırmızı renkli yıldızlar 2.500 – 3.000 derece kadar sıcaktırlar. Haliyle 30.000 derecelik bir sıcaklığa karşı 2.500 derece, 12 kat soğuktur.

Yıldızların renkleriyle sıcaklıklarının ilişkisini gerçek anlamda anlayabilmek ve yıldız asrofiziği açısından ele alabilmek için; şu üç yazımızı muhakkak okumalısınız:

  1. Tayf
  2. Tayf Türleri
  3. Kara Cisim Işıması

Hazırlayan: Kemal Cihat Toprakçı
Bu yazımız, sitemizde ilk olarak 8 Mart 2015 tarihinde yayınlanmış, güncellenerek tekrar yayına sunulmuştur.

Okumaya devam et

Fizik / Astrofizik

Güneş Sistemi’nin Oluşumu: Modern Laplace Teorisi

• İçerik Üreticisi:

Bu yazıyı yaklaşık 10 dakikada okuyabilirsiniz.

Modern Laplace Teorisi günümüzde Güneş Sistemi’nin oluşumunu en iyi anlatan ve en kabul görmüş teoridir. Ancak, Güneş Sistemi’nin oluşumunu açıklamaya çalışan teorileri geçmişten günümüze doğru anlatmaya çalıştığımız yazı dizimizi eğer okumadıysanız, öncelikle birinci ve ikinci bölümlerini okumanızı öneririz.

Laplace’ın ortaya attığı orjinal teorideki açısal momentum sorunu Roche’nin denemesinden başlayarak 100 yılı aşkın süre boyunca çözülmeye çalışılmış, bir çok farklı model denenmiştir. (Açısal momentumun ne olduğu ve nasıl bir sorun yarattığı yazı dizimizin önceki bölümlerinde anlatılmıştı.)

Bu uğraşlar sayesinde Güneş Sistemi’nin oluşum sürecindeki farklı olaylara zaman içinde açıklıklar getirilmiş, 1974’te astronom Andrew Prentice tarafından Modern Laplace Teorisi adı altında daha bütünlüklü bir teori oluşturulmuştur. Teori, kendisinden birkaç sene önce ortaya konulan Güneş Nebulası Teorisi’nin bir devamı gibi durmasının yanında gezegen oluşumlarını ele alışı Protoplanet Teorisi ile benzerlik taşır.

Güneş Sistemimizi oluşturan ana nebulanın çapının 20 parsek (1 parsek = 3.26 ışık yılı, yani 31 trilyon km) olduğu düşünülmektedir. Güneş sistemi bu nebulanın sadece 0.01-0.1 parsek çapındaki bir parçasının çökmeye, yoğunlaşmaya başlamasıyla meydana gelmiştir.

orion_nebula_complex_wide

Fotoğrafta görülen Orion bulutsusu 3.5 parsek (1 parsek = 3.26 ışık yılı) büyüklüğündedir ve 700 civarı yıldıza ev sahipliği yapmaktadır.

 

Güneş öncesi nebulası adını verdiğimiz bu parçada yoğunlaşmaya neden olan, daha doğrusu katalizör görevi gören şeyin süpernovalardan yayılan şok dalgaları olabileceği tahmin edilmiştir. Bu şok dalgaları sayesinde ortamdaki gaz ve toz kümelenmeye başlar ve kütle çekimi etkisiyle yıldız sistemleri meydana gelir. Süpernovalar kütlesi oldukça yüksek olan ve dolayısıyla kısa ömürlü olan yıldızların ömürlerinin sonuna gelince infilak etmeleri sonucu etrafa şok dalgasıyla birlikte içlerindeki materyali de saçarlar.

Demir elementinin kararsız izotoplarından olan 60Fe ve benzer şekilde aluminyum izotopu 26Al, sadece süpernova patlamalarıyla ortaya çıkan ürünlerdendir ve Dünya’ya düşmüş meteoritlerde bu izotoplar bulunmuştur. 60Fe daha eser miktarda bulunduğu için Güneş Sistemi’ni oluşturan etkiyi yaratacak patlamadan çok daha önceki çevrimlerden arta kaldığı düşünülmektedir fakat 26Al miktarı, etrafta 20 Güneş kütlesinden daha büyük bir yıldızın Güneş Sistemi oluşmadan önce patladığını ve sistemimizi oluşturacak gaz ve toza etki ettiğini doğrulamakta.

Supernova’dan gelen şok dalgasının etkisiyle kümelenmeye başlayan bulutsu kütle çekimsel olarak baskın hale geldiğinde çökmeye başlar. Merkezde yoğun bir çekirdek oluştuktan sonra kütle çekimsel alan büyüyüp etraftaki gazları da çekmeye başlar ve daha da büyür. Akresyon adı da verilen bu süreçle etraftaki gazlar sistemin içine dahil edilir ve sistem dışarıdan bağımsız bir hale gelir. Bu andan itibaren içsel süreçlerle evrilme devam eder.

Merkezdeki çekirdek, etrafından madde aldıkça daha az hacme sıkışan bulutsu açısal momentumunu korumak için çok daha hızlı bir şekilde dönmeye başlar. (bir patencinin kendi etrafında dönmeye başladığı sırada kollarını ve bacaklarını bir araya topladığında hızlanması da aynı nedenden dolayıdır.)

Sisteme yandan baktığımız zaman, nebulanın yukarısından ve aşağısından çekilen parçacıkların çarpışmaları ve dikey enerjilerini bu şekilde yok etmeleri nedeniyle sistem yüksekliğini kaybedip genişleyerek bir disk şeklini almaya başlar. Gezegenlerin Güneş ile neredeyse aynı düzlemde yer almalarının nedeni budur.

starbirthdisc477512

Bu ilustrasyonda görülen başlangıç diski ortalama 100 AU genişliktedir. Merkezinde proto yıldız olan bu diskte açısal momentum ve sıcaklık nedeniyle gazlar kenarlara doğru gittikçe genişleyen bir biçimde ilerlerken daha ağır maddeler kütle çekimi etkisiyle içeriye doğru sürüklenir. Modern Laplace Teorisi’ne göre nebula ortalama 100,000 yıl içinde disk şeklini almıştır.

 

Disk küçülmeye devam ederken 10 milyon yıl içinde gaz yapılı dış gezegenler oluşur. Kayaç gezegenlerin oluşması 10-100 milyon yıl içinde gerçekleşir. 50 Milyon yıl içinde ise merkezdeki T-Tauri benzeri proto yıldızın (ön yıldız) kütlesinin yarattığı basınç ve sıcaklık Hidrojen füzyonu başlatacak seviyeye ulaşır, Güneş doğar.

Maddenin nasıl dağıldığına bakacak olursak; bu disk oluşumu sırasında Güneş’e 4 AU (1 AU “astronomik birim” = 150 milyon km) kadar yakın konumlarda hafif gazlar sıcaklık ve basınç dolayısıyla kendilerine yer bulamazken yüksek sıcaklıklarda yoğunlaşma özelliğine sahip olan Kalsiyum ve Alüminyum açısından zengin oluşumlar Güneş’e yakın konumlarda toplanmaya başlarlar.

Kalsiyum-Alüminyum oluşumlarının biraz daha ötesinde ise milimetre ve daha ufak ölçeklerde Krondül adı verilen ve serbestçe dolaşan erimiş damlalar olan silikat küreleri oluşur. En yaygın meteorit tipi olan Krondrit’lerde yani kaya meteoritlerinde bulunurlar.

Yoğunlaşan bu gibi moleküllerin ve demir, nikel alüminyum gibi metal elementlerinin birleşmesiyle oluşan taş ve kaya parçacıkları Güneş Sistemi’nin iç kesimlerinde, çapı 10km’ye varan, Planetesimal‘ler adını verdiğimiz yapıları meydana getirmeye başlarlar ve disk halkalı bir yapıya dönüşme sürecine girer.

Allende_meteorite

Fotoğrafta Allende meteoritinden bir kesit görülmekte. Meteoritin üstündeki beyaz lekeler Güneş sisteminin ilk zamanlarında oluşmuş olan Kalsiyum-Alüminyum’lardır.

 

Gaz ve tozdan oluşan bu diskin iç kısımlarında su molekülleri sıcaklıktan dolayı kristalleşip donamaz. Dış kısımlara doğru gidildikçe, buz hattının ötesinde su molekülleri donmaya başlar. İç kısımlardaki metaller ve silikatlara göre çok daha yüksek miktarda bulunan bu moleküller, donup çarpışmaya ve daha büyük yapıları; buz kayaları oluşturmaya başlarlar.

Yeterince büyüyüp gezegenimsiler halini aldıklarında hızlı bir şekilde birkaç milyon yıldır var olan gaz diskinin en büyük parçasını oluşturan hidrojen ve helyum ile beslenmeye başlarlar. 3 milyon yıl içinde Dünya’nın kütlesinin 4 katı kadar kütle kazanabilirler ve bu gezegenimsiler 10 milyon yıl içinde gaz devlerini oluştururlar.

Bu sebeple güneş sistemimizdeki dış gezegenler, iç gezegenlere oranla çok daha hızlı bir şekilde oluşmuştur. Jüpiter‘in buz hattının hemen ötesinde olması bir rastantı değildir. Buz hattına geçince yoğunlaşmaya başlayan materyaller bir bariyer görevi görerek ortalama 5 AU uzaklıkta birikmeye neden olmuş ve gezegenimsinin oluşum sürecini hızlandırmıştır.

Satürn ise Jüpiter‘den birkaç milyon yıl sonra oluşumunu tamamlamıştır, Jüpiter’den daha düşük kütleli olmasının nedeni etraftaki hidrojen ve helyum gazlarının büyük bir kısmının daha önce Jüpiter tarafından ele geçirilmesinden kaynaklanmaktadır.

olusumdiski54454545

Uranüs ve Neptün‘ün ise günümüzde bulundukları bölgede oluşma ihtimali düşük görülmekte. Materyal dağılımına bakıldığı zaman bu kadar fazla kütleye sahip olmaları oldukça zor görünmesinin yanında, oluşmaları için geçen süre de birkaç yüz milyon yıla yayılıyor.

Bu nedenle Uranüs ve Neptün’ün Güneş’e daha yakın bir konumda, Jüpiter ve Satürn civarlarında gezegen çekirdeklerini oluşturduklarını ve daha sonra yörüngelerinin değiştiğine dair geliştirilmekte olan yörünge göçü modellerinden Nice 2 Modeli günümüzde çalışılmakta. Bu teoriye göre, buz devleri ilk evrelerinde rezonansa (Satürn ve Jüpiter’in kütle çekimsel itimine) kapılmış durumdalar ve oluşumlarından milyonlarca yıl kadar sonra günümüzdeki yörüngelerine yerleşiyorlar.

Dış gezegenlerin yaşadıkları rezonanslar ve yörünge göçleri, Güneş sisteminin daha dış bölgelerindeki yapıların oluşumunda da pay sahibiler.

Neptün’ün ötesindeki Kuiper kuşağı, saçılma diski ve Oort Bulutu buzul yapıya sahip olan kuyruklu yıldızların kaynağını oluşturmaktalar. Güneş’ten oldukça uzakta olan bu bölgelerde yeterli kütle olmadığı için madde akresyona (kümelenmeye) uğrayamaz ve gezegenler oluşturamaz.

olusumdiski454784212

Çizimde yeşil yörünge Jupiter’i, turuncu yörünge Satürn’ü, turkuaz yörünge Uranüs’ü ve koyu mavi yörünge Neptün’ü temsil etmekte.

 

Kuiper kuşağı günümüzde 30-55AU uzaklıkları arasında olsa da Güneş sisteminin ilk zamanlarında daha yakın konumdaydı ve yoğunluğu daha fazlaydı. Dış kısımları 30AU’ya kadar uzanırken içeride günümüzde Neptün ve Uranüs’ün bulunduğu yörüngeleri kapsamaktaydı.

Modele göre Jüpiter ve Satürn’ün, yörüngelerini temizlerken ilk 500 milyon yıl içinde 2:1 oranında rezonansa girmeleri (yani Satürn Güneş çevresinde 2 tam tur atarken Jüpiter’in 1 tam tur atması), çevrelerinde kütle çekimsel bir itki etkisi oluşturuyor ve bu nedenle önceden Güneş’e daha yakın olan Neptün, Uranüs’ün ötesine doğru sürükleniyor. Bu sırada eski Kuiper Kuşağı kalıntılarını da süpürüyor.

Buz devlerinin yörüngelerinin ötelenmesiyle birlikte daha dışarıdaki ufak buz kayaları da onların çekim etkisiyle birlikte iç bölgelere doğru yöneliyorlar. Jüpiter’in etkisiyle çok daha eliptik ve parabolik yörüngelere girmeye başlayan bu cisimlerin bir kısmı sistemin dışına doğru yol almaya başlıyor ve Oort Bulutu’nun da bu şekilde olduştuğu tahmin ediliyor.

oort-cloud457821

Buz hattından daha yakınlarda ise diskteki katı materyalleri bünyesine katan gezegenimsiler, biraz daha karmaşık bir oluşum süreci geçirirler. Güneş sisteminin iç kesimindeki silikat ve metal ağırlıklı cisimler çarpışmalar ve birleşmeler sonucu 1km civarı boyutlara ulaştıklarında, yakın çevrelerini kütleçekimsel olarak etkileyebilen planetesimal’ler dediğimiz ufak parçaları; gezegenimsi parçalarını oluştururlar.

Bir çok planetesimal çarpışmalar sonucu dağılır fakat aralarından bazıları çekimlerine kapılan ve türbülanslar sonucu bünyesine dahil ettiği kaya parçalarıyla sıkışmaya ve büyümeye devam eder. Böylelikle boyutları birkaç yüz km’yi bulan gezegenimsileri oluşur.

Çarpışmaya ve birleşmeye süreçleriyle Güneş Sistemi’nin erken dönemlerinde 50-100 civarı Ay/Mars büyüklüğünde gezegenimsi oluştuğu tahmin edilmektedir. 100 milyon yıl süresince bu gezegenimsiler kütleçekimsel olarak birbirlerini etkiler, çarpışmaya ve büyümeye devam ederler ve sonucunda 4 adet iç gezegeni (Merkür, Venüs, Dünya, Mars) oluştururlar.

theia-smashes-earth

Bu dönemin sonlarına doğru ortalama büyüklüğü Mars kadar olan gezegenimsilerden birinin Dünya’ya çarpması sonucu ise uydumuz Ay oluşmuştur.

İlk 10 milyon yılda dış gezegenler, 100 milyon yılda ise iç gezegenler oluşmakta. Fakat hem iç gezegenlerin oluşum sürecinden arta kalan planetesimaller, hem de dış gezegenlerin yörünge değişimleri nedeniyle Kuiper Kuşağı ve saçılım diskine etki etmeleri nedeniyle; Güneş Sistemi’nde 4.1 ila 3.8 milyon yıl öncesine uzanan, iç gezegenlere yönelik yüksek sayıda meteorit çarpışmasının yaşandığı düşünülen Ağır Bombardıman Dönemi adı verilen bir zaman aralığı vardır.

Ay’daki en büyük kraterler incelendiğinde tarihlenmeleri bu zaman aralığına denk gelir. Dünya’daki suyun da bir kısmı bu dönemde çarpan buz meteoritlerinden gelmektedir.

ay45478211255

Geç Ağır Bombardıman dönemi sonlarında artakalan planetesimal’lerinin bazıları gezegenlerin yörüngeleri tarafından yakalanıp uyduları meydana getirir. Mars’ın uyduları ve Jüpiter gibi devlerin yüksek deklinasyona sahip uyduları bu şekilde yakalanmış cisimlerdir.

Asteroit kuşağı da iç gezegenlerin oluşum döneminde gezegenimsilerin olduğu bir bölgedir. Fakat dev gezegenlerin yörünge değişiklikleri döneminden kalma parçalar pek yoktur. Daha çok Ağır Bombardıman Dönemi sonrası arta kalan gezegenimsiler ve asteroidlerden oluşur. Jüpiter’in çekim gücü nedeniyle yörünge hızları, enerjileri yükseldiği için çarpışma şiddetleri birleşmelerini sağlamaktan çok parçalanmalarını sağlayacak düzeyde olmaktadır.

Hazırlayan: Taylan Kasar

Bu yazımız, sitemizde ilk olarak 1 Nisan 2015 tarihinde yayınlanmış, gözden geçirip hatalardan arındırılarak tekrar yayına sunulmuştur. 

Okumaya devam et

Çok Okunanlar