Connect with us

Fizik / Astrofizik

G Kuvveti Nedir, Ne Yapar?

Bu yazıyı yaklaşık 11 dakikada okuyabilirsiniz.

Yol açık, kemeriniz bağlı. Aracınızın sıfırdan 100 kilometreye kaç saniyede çıkacağını test etmeye karar verdiniz. Trafiğe kapalı alanda olduğunuzu ve hız sınırı olmadığını varsayarak gaza bastınız.

Yaklaşık 6 saniyede aracınızın sürat ibresi saatte 100 kilometreye ulaştı ve siz bu hızlanma boyunca koltuğunuza yapıştınız. İşte sizi koltuğunuza yapıştıran bu hızlanma, üzerinize uygulanan  G-kuvvetinin  bir bileşenidir ve yaklaşık olarak 0,44  g  değerine eşittir.

Arabayı durdurdunuz ve dışarı çıktınız. Üzerinize hala bir  g-kuvveti  uygulanıyor ancak bunu hızlanma olmadığı için hissetmiyorsunuz. Bu  g kuvveti  Dünya’nın yerçekiminden kaynaklanmaktadır ve sizi Dünya’nın merkezine doğru 1  g  sabit değeri ile hızlandırmaya çalışmaktadır.

Burada not düşmekte fayda var; eğer aracınızı durduramayıp saate 100 kilometre süratle sabit bir duvara, engele, araca çarparsanız, maruz kalacağınız yaklaşık 100  g   kuvvet , organlarınızda ve damarlarınızda ciddi iç kanamalara ve parçalanmalara sebep olur, ne kadar iyi bir sürücü olduğunuz önemsizleşir, siz ve başka insanlar büyük ihtimalle böyle kazalardan sağ kurtulamaz. İnsan denilen canlının, yolda yürürken düştüğünde kafasını kaldırım kenarına çarpıp ölebilecek kadar zayıf yapılı olduğunu unutmayın.

Bu arada, not olarak şunu söylemeliyiz: Böylesi kazalarda arabaların ön kısımlarının ağır hasar alma nedeni, adeta bir yay gibi oluşan şoku emmeleri için tasarlanmalarından dolayıdır. Bu da, sizin 100  g  değil, daha az (30-40)  g-kuvvetine maruz kalmanıza neden olur ve hayatta kalma şansınızı artırır. Yoksa, otomobil üreticileri duvara çarptığında çok daha az hasar alabilen arabaları rahatlıkla üretebilir. Fakat, arabanın sağlam kalması sizi hayatta tutmaz. 

G   kuvveti  nedir?

G   Kuvveti , adını kütle çekimi anlamına gelen “gravitational” kelimesinden alır. Hızlanma ölçer (Akselerometre) ile ölçülebilen hızlanma (ivmelenme) değerlerine  g kuvveti  denir. Yani bir cismin herhangi bir yönde, kendisine uygulanan bir  kuvvet  sayesinde hızlanarak ve yavaşlayarak “ağırlık” (weight) değeri üretmesi  g-kuvveti  sayesindedir. Ağırlık üretilmesi için maruz kalınan hızlanmanın bir dirençle karşılaşması gerekmektedir. Bu direnç kaynağı hava olabilir, katı veya sıvı yüzeyler olabilir. Bir uçak, havanın kendisine uyguladığı direnç sayesinde g-kuvvetlerine  maruz kalır. Arabanız, havanın ve yerin uyguladığı direnç  kuvvetlerinin bileşeni yönünde  g-kuvveti  üretmektedir. Ancak yörüngedeki bir uzay aracındaki astronot sadece motorları çalıştırdığında, koltuğunun kendisine ürettiği direnç sebebiyle  g-kuvvetine maruz kalır, diğer durumlarda  g kuvveti  oluşmaz, yani ağırlıksızdır.

Şu anda biz Dünya’nın kütle çekiminin etkisi altındayız ancak hissettiğimiz 1  g  değerindeki kuvvet , bu kütle çekiminin doğrudan olmayan bir sonucudur. Ayaklarımız altındaki yüzeyin, dünyanın merkezine doğru düşme eğilimimize karşı oluşturduğu direnç, bu  g-kuvvetine neden olur. Eğer paraşütle bir uçaktan atlarsak maruz kalacağımız  g-kuvveti , havanın bize karşı direncinden kaynaklanacaktır. Eğer herhangi bir cismin kütle çekiminin etkisi altındayken bize direnç oluşturacak bir şeyle karşılaşmazsak  g kuvveti  hissetmeyiz. Bu duruma sıfır-g (zero-g) denir. Uluslararası Uzay İstasyonu’ndaki veya Apollo görevlerindeki astronotların, Dünya’nın ya da Ay’ın kütle çekimi etkisi altındayken  g-kuvveti  hissetmemelerinin sebebi budur. Bu sıfır-g durumunda uzay araçlarının herhangi bir itki üretmesi, astronotlara hızlanma vektörünün aksi yönünde  g-kuvveti  olarak yansıyacaktır.

Üzerinize uygulanan  g-kuvveti , az önce yazdığımız gibi ağırlığa sebep olmaktadır. Dünya’daki ağırlığınız 84 kg ise bu Ay’da 13,9 kg, Mars’ta 31,6 kg, Jüpiter’de 198,5 kg gibi değerlere karşılık gelmektedir. Yani ben Mars’ta bu kadar hafifim demek, ufak bir kilo problemi olduğunuz gerçeğini değiştirmemektedir, işe yaramaz, denemeyin :). Kütleniz ve maruz kaldığınıZ g-kuvveti  size ağırlığınız olarak geri döner. Formül şu şekildedir:

Ağırlık = kütle x (-  g-kuvveti )

G-kuvvetinin  başına “-” yazılmasının sebebi  g kuvveti  ve kütlenin çarpımı sonucu üretilen ağırlık  g-kuvvetinin  yönünün tersi yöndedir. Ağırlık oluşturan  g-kuvvetine  aynı zamanda pozitif  g-kuvveti  denmektedir. Aksi durumda ise negatif  g-kuvveti  oluşur. Basit bir örnek ile arabanız hızlanırken pozitif  g-kuvvetine  maruz kalırsınız, arabanız yavaşlarken öne doğru eğilmenize neden olan ise negatif  g-kuvvetidir .

1  g  olarak geçen  g kuvveti  bizim normalimizdir. Arttıkça toleransımız düşer, bilinç kaybından, ölüme kadar değişen sonuçlara sebep olabilir. Pozitif  g-kuvvetine  karşı tolerans limitimiz görece daha yüksek iken, negatif  g-kuvvetlerine  karşı tolerans limitimiz daha düşüktür.

Bir roller coaster’da aşağı doğru düşerken yaşadığınız “sıkıntı”, üzerinize uygulanan negatif g-kuvveti nedeniyledir.

 

İlgi çekici bazı pozitif ve negatif  g-kuvveti  örneklerine ve karşılıkları olan yaklaşık hızlanma değerlerine göz atalım.

0.16 g  / 1.6 m/s²: Ay’da zıpladınız, düşmeye başladığınızda hızınız her saniye, saniyede 1,62 metre kadar artacaktır. Ay’a doğru on saniye süren bir düşüşte saniyede 16,2 metre hızla yere çarparsınız.

1g / 9.8 m/s²: Dünya

3g / 30 m/s²: Uzay mekiği (fırlatma ve atmosfere giriş sırasındaki maksimum değeri); İnsan vücudu 3  g  hızlanmaya 25 saniye boyunca dayanabilir, bunun ardından yüksek  g  hızının negatif etkileri hissedilmeye başlanır.

6.3 g  / 60 m/s²: Roller Coaster; tema park trenleri kısa süreliğine bu yüksek hızlanma değerlerine çıkarak başınızı döndürebilir. Uzun süre maruz kalınmadığı için yüksek-g negatif etkileri hissedilmez.

+7g / +70 m/s² & -5g / -50 m/s²: Akrobasi planörü; motorsuz, süzülme prensibi ile çalışan hava araçları olan planörler, akrobasi manevraları sırasında maksimum bu pozitif ve negatif değerleri üretebilirler.

7,1g / 71 m/s²: Apollo 16 (atmosfer girişi)

9g / 90 m/s²:  G-suit  giyen birçok pilotun limiti

12g / 120 m/s²: Birçok askeri jetin üst limiti

18g / 180 m/s²: Fiziksel hasara neden olabilecek ani  g-kuvveti

50g / 500 m/s²: Ölüm ve ciddi yaralanmaya sebep olabilecek ani  g-kuvveti

100g / 1000 m/s²: Saatte 100 kilometre hızla duvara çarpan bir araba kazası: Emniyet kemeriniz ve airbag donanımınıza çok güvenmeyin, bu  g-kuvvetine  organlarınız da maruz kalmaktadır ve boynunuz kırılmasa bile, birden çok organınız ciddi hasar görür. Bunun yanında ciddi iç kanamalar da geçireceksinizdir. Bu kazalardan canlı kurtulma yüzdesi çok düşüktür. Otobanda saatte 160 kilometre süratle giderken ve önünüzdekilere selektör yaparken tekrar düşünün.

otomobil-kaza-557

Bir otomobil kazasında sizi ön camdan fırlatan etken, g kuvvetidir. Ne kadar güçlü ve dikkatli biri olursanız olun, bu kuvvetin sizi savurmasından bir yerlere tutunarak kurtulamazsınız.

Otomobil kullanmak “ciddi bir iş”tir. Dünya’da her yıl 1 milyon insan nükleer santral kazalarında değil, otomobil kazalarında ölüyor.

Parçalanacak bütün organlarınızı ameliyat edecek cerrahlara ulaşacak ya da organ nakli ile kurtulacak kadar uzun süre hayatta kalamayabilirsiniz. Kurtulsanız dahi, öldüreceğiniz insanların sorumluluğu da sizin üzerinizde olacaktır. Anlaşılacağı üzere 100  g  birçok insan için kesin ölüm anlamına gelir.

200g / 2000 m/s²: Sabit diskler için kapalı durumdayken şok toleransı.

300g / 3000 m/s²: Futbol topunun maruz kaldığı maksimum darbe.

15.500 g  / 150.500 m/s²: Modern askeri top mermilerinin içindeki elektronik aksamın şok toleransı.

31.000 g  / 310.000 m/s²: 9 milimetre tabanca mermisinin maruz kaldığı ortalama  g-kuvveti .

100.000 g  / 1.000.000 m/s²: Etobur karıncaların çenelerinin kapanma  kuvveti .

390.000 g  / 3.900.000 m/s²: Sirius B yıldızı üzerinde ayakta durabilirseniz, maruz kalacağınız g   kuvveti . (Tartıdaki ağırlığınız 100 milyon tondan fazla olacaktır.)

 G-Kuvvetinin  İnsan Üzerindeki Etkisi

G-kuvvetine  olan toleransınız maruz kaldığınız  g-kuvvetinin  şiddetine, süresine, yönüne, kuvvet  merkezine ve vücut pozisyonuna bağlıdır. Vücudunuz oldukça esnek ve ufak deformasyonlara dayanıklıdır. Sağlam bir tokat yüzlerce  g’ye  varan şiddetlerde olabilir ancak anlık olduğu için hasar üretmez. Oysa birkaç dakika boyunca 10-15  g   kuvvete  maruz kalmak öldürücü olabilir.

Askeri jet pilotları,  g-kuvveti  toleranslarını arttıracak eğitimlerden geçerek normal insanların dayanabileceği  g-kuvvetlerinden  daha fazlasına, daha uzun süre dayanabilecekleri seviyeye getirilirler.

G-kuvvetine  tolerans değişken olsa da normal bir kişinin tolerans limiti aşağı yukarı 5  g  iken (lunapark trenlerinde bazı insanların bayılması bundandır), askeri pilotlarda eğitim ve  g-suit denen kıyafetler ile bu limit 9  g  seviyesine kadar çıkabilir. Bu  g   kuvvetlerine  yatay pozisyonda dayanma limitiniz daha yüksektir. Bu sebeple astronotlar uzaya fırlatılırken gökyüzüne bakacak şekilde otururlar. Bu ayakta durmanın zorluğundan değil,  g-kuvveti toleransının artmasından dolayıdır.

Aşağıdaki grafikte, yatay pozisyonda kaç şiddetinde  g-kuvvetine  ne kadar süre dayanabileğiniz gösterilmektedir.

GForceGraph

Artan  g-kuvveti  şiddetlerinde vücudunuz giderek kötüleşen tepkiler gösterir. Örneğin insan limitinin çok üstünde, 16  g   kuvvet  ile uzaya fırlatılan bir rokettesiniz. Öncelikle kan basıncının düşmesi ile “grey-out” denen durum baş gösterir.

Grey-out sırasında görüş kaybı başlar. Gördüğünüz ışık soluklaşır ve kararmaya başlar ve tünel vizyon aşaması ile devam eder. Bu aşamada görüş merkeziniz haricinde etraftaki görüntü bulanıklaşmaya ve tünel şekli ile kaybolmaya başlar.

Tünel vizyonu takiben, tam görüş ve ardından  G-LOC  denen bilinç kaybı yaşarsınız; yani bayılırsınız. Bu bayılmanın esas sebebi, hızlanma yüzünden beyninize giden kanın azalmasıdır. Tahmin ettiğiniz gibi bir süre sonra da ölüm gelir. Neyse ki astronotlar fırlatmalar sırasında maksimum 3  g’ye  maruz kalarak bunların hiçbirini yaşamamaktadırlar. Yani eğitiminiz olmadan siz bile bir uzay mekiği ile fırlatılarak bayılmadan yörüngeye varabilirdiniz.

Dönme (Rotasyon) Ve Yapay Yerçekimi

Uzayda dünya benzeri yerçekimi koşulları oluşturmamızın iki yöntemi vardır. Biri rotasyon yani bir eksen etrafında dönmektir diğeri de hızlanma ve yavaşlamadır. Bilim kurgu filmlerinde uzay gemilerinin, merkez eksen etrafında dönen silindir şekilli halkalarla çevrili olduğunu görürüz. Astronotlar bu halkaların içerisinde Dünya’daki gibi yürümektedir.

Bunun sebebi rotasyon halindeki halka yapı içerisinde, objelerin atalet sebebiyle düz bir çizgi izleyerek hareket etmeleridir. Halkanın yüzeyi de merkezcil ivme sağlayarak, objelerin yüzeyde sabit bir şekilde, yerçekimine benzer bir etkiyle durmalarını sağlar.

Tabii yüzeyde duran herhangi bir objeye  kuvvet  uygulayacak olsanız bu objenin coriolis etkisi ile dönüş yönünde hareket eğiliminde olduğu görülecektir. Bu özellikle optimum olmayan dönüş hızlarında bir astronota baş dönmesi ve rahatsızlık olarak yansıyabilir. Bu etkiyi test etmek amacıyla Uluslararası Uzay İstasyonu’na gönderilmesi düşünülen bir modül planı bulunsa da henüz çalışmalar ciddi şekilde başlamamıştır.

Biraz Eğlenelim Ve Yıldızlararası Bir Uzay Gemisini Hızlandıralım

İnsanlı bir gemiyi Centauri Sistemi’ne yani Güneş’e en yakın yıldız sistemine göndermek istediniz. Sistemin bize en yakın yıldızı Proxima Centauri (Alpha Centauri C) 4,24 ışık yılı mesafede. Günümüzdeki yaygın olan hiç bir yakıt ve roket türü bizi yıldızlara kısa sürelerde taşıyamaz. İyon, plazma, nükleer ve termonükleer roketler dahi yıldızlararası görevler için yeterli değildir. Şu anki bilim ve teknolojimiz, amacımızı sadece ışık yelkenlileri ve antimadde ile yerine getirebileceğimizi göstermekte.

Antimaddeyi örnek alarak konumuza devam edelim. Antimadde, yanımızda gerçekçi ölçülerde taşıyabileceğimiz miktarlar ile bizi ışık hızının yüksek yüzdelerine ulaştırarak insan ömrü içinde ulaşımı mümkün kılabilir. Centauri Sistemi’ne 0,5 c maksimum süratte bir seyir için örnek oran her 1 ton yük için 5,64 ton yakıttır. (2,82 ton proton ve 2,82 ton anti-proton)

Farz edelim uzak gelecekte bolca antimaddeye ve antimadde roketlerine kavuştuk.

Bu anti-madde ile ışık hızının yüksek yüzdelerine ulaşmak uzak gelecekte mümkün olacak. Ancak bu süratlere erişim için mürettebatı 1  g’den  daha fazla hızlanmalara maruz bırakmanın oldukça negatif etkileri olacaktır. Çünkü 2  g  ya da üstü alışık olduğumuz normallerin dışındadır. Yukarıdaki tablodan da görebileceğiniz üzere 4  g  üstü  kuvvetlerde  normal bir insan vücudunun toleransı dakikalara inmektedir. Bu sebeple uygulanabilecek optimum hızlanma 1 g  olacaktır. Bu ayrıca gemide dünya benzeri bir yerçekiminin simüle edilmesini de sağlar. Gemi hızlanma ve yavaşlama durumlarındayken sanki Dünya’daymış gibi yere basıp normal bir şekilde yürüyebilirsiniz. Yüksek  g-kuvvetlerine  dayanmamızı sağlayacak bir yöntemimiz yok. Örneğin sıvı dolu uyku kapsüllerinde aylar boyunca uyutulmuyoruz ya da sihirli bir ilacımız yok. 1  g’ye  mahkumuz.

Normal 1  g  hızlanma ile ışık hızının yüzde 77’sine (0,77c) yaklaşık bir yıl içinde ulaşırız. İki yıl boyunca hızlanma ile 0,97 c hıza ulaşılabilir. (Ne kadar uzun süre hızlanırsak hızlanalım; ışık hızına asla ulaşamayız. Sadece altında kalan yüzdelere erişebiliriz. Örneğin yeterli yakıtımız varsa 12 yılda hızımız 0,99999999996 c olacaktır.)

Örneğin 0,5 c seyir hızımızı seçtik. Gemimizi ışık hızının yarısına ulaştırmamız gerekiyor. Saniyede yaklaşık 150 bin kilometre (saniyede 150.000.000 metre) sürate insan limitleri dahilinde 1  g  (10 m/s²) ile ulaşmamız yaklaşık 173 gün sürer. Bu süre zarfında gemide hızlanma yönü aksinde 1  g  ile Dünya benzeri yer çekimi hissi yaşarız. 173 gün boyunca motorlarımızı ateşleyip hızlandıktan sonra yaklaşık 6,5 yıl boyunca 0,5 c sürat ile seyir edeceğiz. 6,5 yıl sonunda gemimizi ters döndürüp tekrardan motorlarımızı ateşleyerek yine 173 gün sürecek bir yavaşlama sürecine başlayacağız. İnsansız araçların tolerans limiti çok daha yüksek olduğundan bizim dayanamayacağımız onlu ve hatta yüzlü  g-kuvvetlerinde hızlanmalar ile çok daha kısa sürede motor ateşleme süreleri mümkün olabilir.

 Berkan Alptekin 

Fizik / Astrofizik

Negatif Enerji ve Negatif Kütleli Madde Nedir?

• İçerik Üreticisi:

Bu yazıyı yaklaşık 3 dakikada okuyabilirsiniz.

Negatif enerji ve negatif kütle, özellikle “warp sürüşü” veya “solucan deliği” gibi kavramların konuşulduğu ortamlarda sıklıkla dile getiriliyor.

Bu kavramların gerçekliği her ne kadar tartışmalı olsa ve bilim insanlarının büyük kısmı tarafından spekülasyon olarak görülse de, ne olup olmadıklarını açıklamak gerektiğini düşündük.

Negatif Kütleli Madde

Negatif kütleli madde denildiğinde çoğumuzun aklına Antimadde ya da Karanlık Madde geliyor. Ancak, bunlarla karıştırmayınız. Teorik fizikte, negatif kütle sahibi madde, 0 ağırlıktan daha düşük kütleye sahip, “hiçbir şeyden daha hafif” diye tabir edebileceğimiz ve kütle çekimi tarafından çekilmeyen tersine itilen spekülatif bir egzotik maddedir.

Bir ya da daha fazla enerji durumunu ihlal eder. Bir tartı üzerine koyarsanız tartıya ters basınç uygular ve -10 kg gibi bir sonuç görürsünüz. Eğer evrende negatif kütleli egzotik madde çeşitleri varsa, gezegenlerin, yıldızların hatta galaksilerin kütle çekimleri tarafından çok uzaklara itilmiş ve belki de hiçbir zaman ulaşamayacağımız galaksiler arası derin uzayda bulunuyor olabilirler.

Peki fizik kanunlarını ihlal ediyorsa nasıl gerçek olabilecekmiş gibi konuşabiliyoruz? Böyle bir şeyin bizim evrenimizde bulunmaması gerekmez mi? Katı haldeki negatif kütleli madde, ancak “mükemmel sıvı” diye tabir edilen bir halde negatif kütle sahibi maddede bulunabilir.

Kanada, Montreal Üniversitesi’ndeki kozmologlar Saoussen Mbarek ve Manu Paranjape mükemmel sıvı haldeki negatif kütle sahibi bir maddenin hiçbir enerji durumunu ihlal etmediğini açığa çıkardı. Gereken tek şey, bu maddeyi Big Bang esnasında üretmiş olabilecek bir mekanizma. Kısacası şu anda böyle bir maddenin gerçekliğini ne inkar edip imkansız diyebilecek ne de onaylayabilecek bir durumdayız.

Negatif enerji

Negatif enerji, adından da anlaşılacağı üzere eksi değerleri olan enerji seviyelerine denir. Karanlık Enerji ile karıştırmayınız. Tamamen kuramsal olan negatif kütleli madde, aksine negatif enerji çeşitli kuantum durumlarında stabil olmayan şekilde mümkün olabiliyor.

Bununla birlikte karakteristik olarak negatif enerjiye oldukça benzeyen ancak negatif enerji sayılmayan ve çok küçük ölçeklerde gerçekleşen Casimir etkisinden de bahsedelim. 1933’te Hendrik Casimir, Kuantum Teorisi’nin kanunlarını kullanarak garip bir öngörüde bulundu. Casimire göre; (alttaki resimde görülen) vakum içerisindeki iki adet paralel, yüksüz metal plaka birbirlerini itecekti.

Normalde yüksüz olan bu plakaların sabit durması gerekmekteydi ancak bu iki plaka arasındaki vakum boş değildi, gerçekliğe giriş, çıkış yapan sanal parçacıklar ile doluydu. Bu noktada sanal parçacıklarla ilgili yazımıza göz atmanız faydalı olacaktır. (Bkz. Belirsizlik ve Kuantum Dalgalanmaları)

Bu vakum, çok kısa ömürlü elektronların ve pozitronların ortaya çıkıp birbirlerini imha ederek yok olduğu kuantum aktiviteleri ile doludur. Normalde bu yoktan var olan ufak madde-antimadde olayları Enerjinin Korunumu Kanunu’nu ihlal ediyor gibi görünse de; belirsizlik ilkesi sebebiyle bu küçük patlamalar inanılmaz ölçüde kısa ömürlü olup, net enerjide değişikliğe sebep olmamaktadır. Böylece Casimir bu kısa ömürlü olayların plakalar arası vakumda bir basınç yaratacağını ve bu basıncın plakaları iteceğini keşfetti. Normalde bu plakalar birbirinden uzakken bu etki gerçekleşmezken, plakalar yaklaştırıldıkça aralarında bu enerji açığa çıkmaya başlar.

Bu enerji 1948’de laboratuvarda, Casimir’in öngördüğü gibi gözlemlendi. Bu enerjiyi ölçmek için inanılmaz hassas ve sanat eseri sayılabilecek ekipman gerektiğinden, 1996’da ilk hassas ölçüm yapıldığında bu etkiden kaynaklanan basıncın bir karıncanın ağırlığının 30 binde 1’i kadar olduğu bulundu. Tahmin ettiğiniz gibi uzay-zamanı bükmek için çok yeterli değil.

Negatif enerjiye başka bir örnek de, kara deliklerin buharlaşma sürecinde açığa çıkan ve Hawking radyasyonu mekanizması sırasında oluşan kısa ömürlü sanal parçacıklar verilebilir.

Hazırlayan: Berkan Alptekin

Okumaya devam et

Fizik / Astrofizik

Hologram Evren Kavramı Ne Anlama Geliyor?

• İçerik Üreticisi:

Bu yazıyı yaklaşık 6 dakikada okuyabilirsiniz.

Yaşadığımız evrenin aslında bir hologram olduğu söylemi son yıllarda fizik ile ilgili ortaya çıkan en büyük yanlış anlamalardan birine sebep olmakta. Bu yazıda konuda geçen kavramları ele alacağız, fizikçiler aslında ne demek istiyor onu açıklayacağız.

Hayır evrenimiz hologram değil. Bu sözcük evrenin olması gerektiği düşünülen bazı özelliklerini tanımlamak için kullan bir metafor. Bilimkurguda rastladığımız “bir simülasyonun içinde yaşama” eylemini sağlayan hologramla ilgisi yok. Bunu netleştirelim ve konunun bel kemiğini oluşturan Holografik İlke aslında ne demek ona bakalım.

Holografik İlke

Öncesinde başka bir konuya, entropiye bakmamız gerekiyor. Bir kara deliğin olay ufku sınır kabul edilir ve entropisi olay ufku yüzey alanının 4’e bölünmesiyle bulunur. Evrende, içinde madde barındıran, kara delik dışında bir bölge düşünün. Bu bölgenin kara deliğe benzer bir şekilde toplam entropisinin bir limiti var mıdır?

Biraz düşünecek olursak; eğer bu bölgenin içine madde eklemeye başlarsak bölgenin entropisini arttırırız. Fakat madde eklemeye devam ederken belli bir noktadan sonra o bölgede o kadar çok madde birikir ki, sonunda bu bir karadelik oluşturur.

Yani evrende bir bölgenin entropisini sonsuza kadar arttıramıyoruz. Limit var; çünkü entropi arttırmak için aynı hacime daha çok madde eklemek eninde sonunda kara delik oluşturuyor. Dolayısıyla evrende bir bölgede olabilecek en yüksek entropi nedir diye merak ediyorsak; o bölgenin yüzey alanının 4’e bölmemiz gerekiyor. (sanki kara deliğin entropisini ölçüyormuş gibi)

Entropiye aslında bir bilgi ölçeği de diyebiliriz. Evrendeki her madde, her parçacık, her dalga bilgi, yani enformasyon taşır. Bir yerde ne kadar çok madde varsa, o kadar çok bilgi vardır, dolayısıyla entropi o kadar yüksektir. Bu çıkarım bir fiziksel ilke, yani uymak zorunda kalınan bir kural. Holografik ilke adı verilen bu kural kısaca demekte ki; bir miktar hacmin içerisindeki bilgi miktarı, o hacme tanımlanan toplam bilgi miktarını geçemez.

Fizikte ilke/prensip adı altında geçen tanımlamalar, bir konuyla ilgili teorileri formülize etmek için kullanılır. Holografik ilke ise, Kuantum yerçekimi teorisini oluşturabilmek için kullanılması gereken bir ilkedir. Kuantum yerçekimi teorisi oluşturmak için işe koyulduysanız, bulduğunuz teori ya bu ilkeye uymak zorunda, ya da bu ilkeyi ihlal ediyorsa neden ihlal ettiğini çok iyi açıklayabilmek zorunda. Yoksa, teoriniz tutarsız olur.

Yapısı gereği deneysel olarak test edilebilecek tahminlere sahip olmayan bu gibi bilimsel ilkeler, belirli bilimsel teorileri oluşturmak için kullanılırlar yukarıda belirttiğimiz gibi. Dolayısıyla, prensibin tek başına varlığı, evrenin hologram olduğu veya evrenin bu prensibe gerçekten uyduğu anlamına gelmez.

Evrenin Holografik ilkeye uyup uymadığı ifadesi ise test edilmesi gereken bir önermedir. Fakat bunun yapılabilmesi için önce işe yarar, çalışan bir kuantum yerçekimi teorisi oluşturmak gerekiyor.

Dolayısıyla, eğer biri size evrenin hologram olduğundan bahsediyorsa, o kişinin aslında neyden bahsettiği hakkında bir fikri olmadığı söylenebilir. Medyada son zamanlarda çokça ortaya çıkmaya başlayan evrenin hologram olduğu kanıtlandı benzeri haberler de benzer bir şekilde yanıltıcı ifadelerle son zamanlarda yapılan çalışmaları anlatmaya çalışıyor.

The Matrix, hologram kavramının ötesinde, dijital sanal bir evren tasvir eder.

Bu haberlerin yapıldığı makaleler aslında biri AdS diğer CFT adında iki gerçek olmayan teorinin bağlantısını ifade eden AdS/CFT konjektürü adlı matematiksel tanımlamaya dayanmakta ve bu, yaşadığımız evren ile ile ilgili bir şey de söylememekte.

Konuyu genel hatlarıyla anlayabilmeniz için bu iki karışık matematiksel teorinin detaylarını bilmeniz gerekmiyor merak etmeyin. Sadece uzayı farklı şekilde tanımlayan iki farklı matematiksel modelin olduğunu ve bu ikisinin birbirleriyle ilişkisinin üzerine çalışıldığını söylüyorum. Aşağıda iki teoriye de kısaca değineceğim.

O zaman neden bu AdS/CFT’ye ihtiyaç duyuluyor?

Yukarıda anlattığımız holografik prensip sadece sözlerden oluşan bir şey ve sözler keskinlik konusunda iyi değillerdir, hesaplanamazlar. Fizikçiler düşünceleri matematiksel denklemler halinde yazmayı severler, böylece bahsedilen şeyin niteliği ve niceliği analiz edilebilir olur.

AdS/CFT konjektürü de bu şekilde holografik prensip’e dayanan matematiksel bir modeldir. Fakat bu matematiksel model gerçek değil yani bizim evrenimizi tanımlamıyor. Peki madem gerçek değil, o zaman neden üzerinde çalışıyor?

Fizikte “Oyuncak Teori” olarak da bilinen bir kavram bu. Gerçek olmadığı bilindiği halde bu gibi teorilerin üzerinde çalışılmasının iki nedeni var.

1 – Basit bir model olduğu için daha karmaşık ve gerçek olan modellerde yapılamayan hesaplamaları yapmaya olanak sağlamaları.

2 – Gerçekçi bir modelimizin olmadığı bir alanda, elimizdeki verilerle ne yapabildiğimize bakabilmek.

Peki o zaman AdS/CFT konjektürü bize ne anlatıyor? Teknik detayına girmediğimizde bunun sicim teorisinde tanımlanan D3-zarıyla uğraştığını söyleyebiliriz.

Bu zara iki farklı perspektiften bakılıyor. Bir perspektiften bakıldığında 5 boyutta (kuantum) yerçekimi teorisi gibi duruyor, buna AdS tarafı deniliyor. Diğer perspektiften yani CFT tarafından bakıldığında ise yerçekiminin dahil olmadığı 4 boyutlu teori gibi duruyor.

adc67216f99baacc75f599e955427160

Fakat zar aynı zar olduğu için, hangi perspektiften bakarsak bakalım aynı şekilde davranması gerekmekte. Yani aynı hesaplamaları 5 boyutlu teoride de 4 boyutlu teoride de yaptığımızda aynı sonuçları almalıyız.

Bir şeyin bu şekilde iki farklı tanımının olması, yani modelin ikili yapısı, hesaplamalar yaparken oldukça kullanışlı, faydalı oluyor. Hesaplanmak istenen şey eğer yerçekiminin dahil olduğu AdS tarafında hesaplanması çok zor ise, yerçekimsiz olan CFT teorisinde hesaplanarak bulunabiliyor.

AdS/CFT modeline konjektür yani varsayım sıfatını vermemin nedeni daha tam kanıtlanamamış olması. Fakat bu konjektürün doğru olabileceğine dair birçok veri var. Bunlar yukarıda anlattığımız gibi hesaplamaların iki farklı perpektiften de bakılarak yapılıp karşılaştırılmasıyla ve sonuçların tutmasıyla olmakta. Fakat sonuçların her zaman tutarlı olacağı henüz söylenememekte.

Bilim sitelerinde “fizikçiler evrenin hologram olduğuna dair kanıt buldular” diye haberlere rastladığınız zaman, o habere konu olan makalenin aslında demek istediği şey AdS/CFT konjektüründe tutarlı olan bir hesaplama daha bulunduğu. Fakat tekrar edelim, bu bizim evrenimizle ilgili bir şey söylememekte, sadece gerçek olmayan model hakkında daha yeni bir bilgi vermekte.

Modelin gerçek olmamasının nedenlerine gelecek olursak:

  • Model sırtını sicim teorisine dayamakta ve aslında sicim teorisi de “Oyuncak Teori” sınıfına girmekte. Sicim teorisi evrenimizi ile ilgili gerçek bir tanımlama yapmamakta. Sanal bir evren tanımı yapmakta ve bu evren bazı açılardan bizim evrenimiz ile benzerlikler taşıyor fakat bazı açılardan oldukça farklı.

  • Yerçekiminin de dahil olduğu perspektife AdS deniliyor çünkü bu evreni “Anti de Sitter” adında özel bir geometri ile tanımlıyor. Evrenimiz bu geometriye sahip değil. Hatta bunun tam tersi olan “de Sitter” ile tanımlanmış durumda. Dolayısıyla AdS bizim evrenimize bağlı bir tanım yapmıyor.

  • Yerçekiminin dahil olmadığı perspektif olan CFT ise evreni Conformal Simetri adında özel bir geometri ile tanımlıyor. Bu nedenle adı Conformal Field Theory/Conformal Alan Teorisi. Fakat evrenimiz hem conformal simetriye sahip değil hem de yerçekimi var. Dolayısıyla CFT de bizim evrenimize bağlı bir tanım yapmamakta.

Sonuç olarak; AdS/CFT konjektürü sanal bir evren modeli tanımlıyor ve bu tanımladığı evren bizim evrenimiz değil. Holografik ilkenin matematiksel bir karşılığı. Oldukça önemli olmasına ve teorik fizikte bir çok uygulama alanı olmasına rağmen bizim evrenimizle bir ilişkisi yok.

Yine de Holografik ilenin gerçek olmayan matematiksel bir modeli olan AdS/CFT çalışmaları, ileride bizim evrenimize de uygulanabilecek gerçek bir model için zemin hazırlamakta ve serimizin ilk yarısında belirttiğimiz gibi işleyen bir kuantum yerçekimi teorisi ortaya çıktıktan sonra holografik prensibin empirik olarak sınanmasının da önü açılacak.

Hazırlayan: Taylan Kasar

Konuyla ilgili diğer yazılarımız:
Evren bir simülasyon mu? – 1
Evren bir simulasyon mu? – 2

Okumaya devam et

Fizik / Astrofizik

Yıldızların Rengi ve Sıcaklığı Arasındaki İlişki

• İçerik Üreticisi:

Bu yazıyı yaklaşık 3 dakikada okuyabilirsiniz.

Yıldızların rengi ve sıcaklığı arasındaki ilişki bazen kafa karıştırıcı olabiliyor. Astronomi sitelerinde vakit geçirmeyi seven pek çoğumuz şu bilgi notuyla karşılaşmışızdır; ”Zannedilenin tersine mavi yıldızlar, kırmızılardan çok daha sıcaktır.” Peki ama neden?

Günlük yaşamımızdan da bildiğimiz üzere, ısındığı için ışık yayan cisimlerin yaydıkları ışığın rengi, cismin sıcaklığıyla ilgilidir (fluoresan ve led türü soğuk ışık kaynakları şu anki konumuz değil). Yıldızlar dahil olmak üzere, ısısı nedeniyle ışık yayan tüm cisimler aslında kara cisim ışıması yaparlar.

Örneğin kırmızımsı – turuncu renkte gördüğümüz elektrikli sobanın çubuklarının sıcaklığı 2.000 santigrat derece kadardır. Evlerimizde kullandığımız Edison tipi bir akkor ampulün içindeki flaman sarımsı ışık yayar. Bu flamanın sıcaklığıysa yaklaşık 3.000 derece civarındadır.

hand-holding-lit-lightbulb

Eğer bir cismi daha fazla ısıtabilirsek renginin giderek maviye döndüğünü görebiliriz. Bir odunu yaktığımızda, odunun bitişiğinde yanmakta olan ateş mavi renktedir. Yanan ateş, kaynağından uzaklaştıkça, alevi oluşturan partiküller soğuduğu için maviden kırmızıya doğru kayar. Bunu bir çakmak veya kibrit yaktığımızda da gözleyebiliriz.

Örneğin bir kibrit yanarken ateş, kaynağına en yakınken mavi renktedir. Fakat, kaynağından uzaklaşıp havadaki görece düşük sıcaklıkla karşılaştıkça yavaş yavaş sıcaklığını kaybeder, mavi renkten beyaza, beyazdan sarıya, sarı renkten de kırmızıya döner ve gözden kaybolur.

Tabi bu arada şunu belirtmek lazım; Dünya üzerinde gördüğümüz alevlerin rengini sadece sıcaklık belirlemez. Alevi oluşturan kimyasal madde de renge etki eder. Kibrit ve çakmak örneğinde mavi alevli kısım aslında 1.000 santigrat dereceden düşük sıcaklıkta olmasına rağmen mavidir, çünkü alevi oluşturan kimyasallar bu rengi yayarlar. Ancak, bunu göz ardı edersek, “öğretici örnekleme” açısından uygundur.

1010419_391319711014514_490058086_n

Türlerine göre yıldızlarının evrende bulunma oranları. Her 1 adet O-B sınıfı yıldıza karşı diğer yıldız türlerinden kaç tane olduğu. Şu makalemize de göz atabilirsiniz.

 

İşte yıldızlarda da durum buna çok benzerdir. Elbette yıldızlarda alev yoktur. Sıcaklık, yıldızın çekirdeğindeki nükleer reaksiyon sonucu alevsiz olarak oluşur. Daha başka bir deyişle, yıldızları ısıtan şey ateş değildir. Fakat bizler Dünya üzerinde sıcaklığın sadece “kimyasal bir reaksiyon olan” ateş ile oluştuğunu gözlemlediğimiz için, yıldızları da birer alev topu olarak düşünürüz. Bu, içine düştüğümüz bir yanılgıdır.

Sıcak yıldızların ışığı mavi, soğuk yıldızlarınkiyse kırmızıdır. Yıldızın rengini, çekirdek bölgesindeki nükleer reaksiyonun miktarı belirler. Büyük ve sıcak yıldızlarda bu reaksiyon çok fazla olduğu için yıldız da orantılı olarak o kadar fazla ısınır ve rengi de bununla bağlantılı olarak kırmızıdan maviye doğru (sırasıyla kırmızı, sarı, beyaz, mavi) değişir.

Burada kırmızı yıldızlara soğuk demekteyiz fakat soğuk değildirler, bu “göreli” bir tanımlamadır. Mavi renkli yıldızlar 30.000 santigrat dereceden fazla sıcak olabilirken, kırmızı renkli yıldızlar 2.500 – 3.000 derece kadar sıcaktırlar. Haliyle 30.000 derecelik bir sıcaklığa karşı 2.500 derece, 12 kat soğuktur.

Yıldızların renkleriyle sıcaklıklarının ilişkisini gerçek anlamda anlayabilmek ve yıldız asrofiziği açısından ele alabilmek için; şu üç yazımızı muhakkak okumalısınız:

  1. Tayf
  2. Tayf Türleri
  3. Kara Cisim Işıması

Hazırlayan: Kemal Cihat Toprakçı
Bu yazımız, sitemizde ilk olarak 8 Mart 2015 tarihinde yayınlanmış, güncellenerek tekrar yayına sunulmuştur.

Okumaya devam et

Fizik / Astrofizik

Güneş Sistemi’nin Oluşumu: Modern Laplace Teorisi

• İçerik Üreticisi:

Bu yazıyı yaklaşık 10 dakikada okuyabilirsiniz.

Modern Laplace Teorisi günümüzde Güneş Sistemi’nin oluşumunu en iyi anlatan ve en kabul görmüş teoridir. Ancak, Güneş Sistemi’nin oluşumunu açıklamaya çalışan teorileri geçmişten günümüze doğru anlatmaya çalıştığımız yazı dizimizi eğer okumadıysanız, öncelikle birinci ve ikinci bölümlerini okumanızı öneririz.

Laplace’ın ortaya attığı orjinal teorideki açısal momentum sorunu Roche’nin denemesinden başlayarak 100 yılı aşkın süre boyunca çözülmeye çalışılmış, bir çok farklı model denenmiştir. (Açısal momentumun ne olduğu ve nasıl bir sorun yarattığı yazı dizimizin önceki bölümlerinde anlatılmıştı.)

Bu uğraşlar sayesinde Güneş Sistemi’nin oluşum sürecindeki farklı olaylara zaman içinde açıklıklar getirilmiş, 1974’te astronom Andrew Prentice tarafından Modern Laplace Teorisi adı altında daha bütünlüklü bir teori oluşturulmuştur. Teori, kendisinden birkaç sene önce ortaya konulan Güneş Nebulası Teorisi’nin bir devamı gibi durmasının yanında gezegen oluşumlarını ele alışı Protoplanet Teorisi ile benzerlik taşır.

Güneş Sistemimizi oluşturan ana nebulanın çapının 20 parsek (1 parsek = 3.26 ışık yılı, yani 31 trilyon km) olduğu düşünülmektedir. Güneş sistemi bu nebulanın sadece 0.01-0.1 parsek çapındaki bir parçasının çökmeye, yoğunlaşmaya başlamasıyla meydana gelmiştir.

orion_nebula_complex_wide

Fotoğrafta görülen Orion bulutsusu 3.5 parsek (1 parsek = 3.26 ışık yılı) büyüklüğündedir ve 700 civarı yıldıza ev sahipliği yapmaktadır.

 

Güneş öncesi nebulası adını verdiğimiz bu parçada yoğunlaşmaya neden olan, daha doğrusu katalizör görevi gören şeyin süpernovalardan yayılan şok dalgaları olabileceği tahmin edilmiştir. Bu şok dalgaları sayesinde ortamdaki gaz ve toz kümelenmeye başlar ve kütle çekimi etkisiyle yıldız sistemleri meydana gelir. Süpernovalar kütlesi oldukça yüksek olan ve dolayısıyla kısa ömürlü olan yıldızların ömürlerinin sonuna gelince infilak etmeleri sonucu etrafa şok dalgasıyla birlikte içlerindeki materyali de saçarlar.

Demir elementinin kararsız izotoplarından olan 60Fe ve benzer şekilde aluminyum izotopu 26Al, sadece süpernova patlamalarıyla ortaya çıkan ürünlerdendir ve Dünya’ya düşmüş meteoritlerde bu izotoplar bulunmuştur. 60Fe daha eser miktarda bulunduğu için Güneş Sistemi’ni oluşturan etkiyi yaratacak patlamadan çok daha önceki çevrimlerden arta kaldığı düşünülmektedir fakat 26Al miktarı, etrafta 20 Güneş kütlesinden daha büyük bir yıldızın Güneş Sistemi oluşmadan önce patladığını ve sistemimizi oluşturacak gaz ve toza etki ettiğini doğrulamakta.

Supernova’dan gelen şok dalgasının etkisiyle kümelenmeye başlayan bulutsu kütle çekimsel olarak baskın hale geldiğinde çökmeye başlar. Merkezde yoğun bir çekirdek oluştuktan sonra kütle çekimsel alan büyüyüp etraftaki gazları da çekmeye başlar ve daha da büyür. Akresyon adı da verilen bu süreçle etraftaki gazlar sistemin içine dahil edilir ve sistem dışarıdan bağımsız bir hale gelir. Bu andan itibaren içsel süreçlerle evrilme devam eder.

Merkezdeki çekirdek, etrafından madde aldıkça daha az hacme sıkışan bulutsu açısal momentumunu korumak için çok daha hızlı bir şekilde dönmeye başlar. (bir patencinin kendi etrafında dönmeye başladığı sırada kollarını ve bacaklarını bir araya topladığında hızlanması da aynı nedenden dolayıdır.)

Sisteme yandan baktığımız zaman, nebulanın yukarısından ve aşağısından çekilen parçacıkların çarpışmaları ve dikey enerjilerini bu şekilde yok etmeleri nedeniyle sistem yüksekliğini kaybedip genişleyerek bir disk şeklini almaya başlar. Gezegenlerin Güneş ile neredeyse aynı düzlemde yer almalarının nedeni budur.

starbirthdisc477512

Bu ilustrasyonda görülen başlangıç diski ortalama 100 AU genişliktedir. Merkezinde proto yıldız olan bu diskte açısal momentum ve sıcaklık nedeniyle gazlar kenarlara doğru gittikçe genişleyen bir biçimde ilerlerken daha ağır maddeler kütle çekimi etkisiyle içeriye doğru sürüklenir. Modern Laplace Teorisi’ne göre nebula ortalama 100,000 yıl içinde disk şeklini almıştır.

 

Disk küçülmeye devam ederken 10 milyon yıl içinde gaz yapılı dış gezegenler oluşur. Kayaç gezegenlerin oluşması 10-100 milyon yıl içinde gerçekleşir. 50 Milyon yıl içinde ise merkezdeki T-Tauri benzeri proto yıldızın (ön yıldız) kütlesinin yarattığı basınç ve sıcaklık Hidrojen füzyonu başlatacak seviyeye ulaşır, Güneş doğar.

Maddenin nasıl dağıldığına bakacak olursak; bu disk oluşumu sırasında Güneş’e 4 AU (1 AU “astronomik birim” = 150 milyon km) kadar yakın konumlarda hafif gazlar sıcaklık ve basınç dolayısıyla kendilerine yer bulamazken yüksek sıcaklıklarda yoğunlaşma özelliğine sahip olan Kalsiyum ve Alüminyum açısından zengin oluşumlar Güneş’e yakın konumlarda toplanmaya başlarlar.

Kalsiyum-Alüminyum oluşumlarının biraz daha ötesinde ise milimetre ve daha ufak ölçeklerde Krondül adı verilen ve serbestçe dolaşan erimiş damlalar olan silikat küreleri oluşur. En yaygın meteorit tipi olan Krondrit’lerde yani kaya meteoritlerinde bulunurlar.

Yoğunlaşan bu gibi moleküllerin ve demir, nikel alüminyum gibi metal elementlerinin birleşmesiyle oluşan taş ve kaya parçacıkları Güneş Sistemi’nin iç kesimlerinde, çapı 10km’ye varan, Planetesimal‘ler adını verdiğimiz yapıları meydana getirmeye başlarlar ve disk halkalı bir yapıya dönüşme sürecine girer.

Allende_meteorite

Fotoğrafta Allende meteoritinden bir kesit görülmekte. Meteoritin üstündeki beyaz lekeler Güneş sisteminin ilk zamanlarında oluşmuş olan Kalsiyum-Alüminyum’lardır.

 

Gaz ve tozdan oluşan bu diskin iç kısımlarında su molekülleri sıcaklıktan dolayı kristalleşip donamaz. Dış kısımlara doğru gidildikçe, buz hattının ötesinde su molekülleri donmaya başlar. İç kısımlardaki metaller ve silikatlara göre çok daha yüksek miktarda bulunan bu moleküller, donup çarpışmaya ve daha büyük yapıları; buz kayaları oluşturmaya başlarlar.

Yeterince büyüyüp gezegenimsiler halini aldıklarında hızlı bir şekilde birkaç milyon yıldır var olan gaz diskinin en büyük parçasını oluşturan hidrojen ve helyum ile beslenmeye başlarlar. 3 milyon yıl içinde Dünya’nın kütlesinin 4 katı kadar kütle kazanabilirler ve bu gezegenimsiler 10 milyon yıl içinde gaz devlerini oluştururlar.

Bu sebeple güneş sistemimizdeki dış gezegenler, iç gezegenlere oranla çok daha hızlı bir şekilde oluşmuştur. Jüpiter‘in buz hattının hemen ötesinde olması bir rastantı değildir. Buz hattına geçince yoğunlaşmaya başlayan materyaller bir bariyer görevi görerek ortalama 5 AU uzaklıkta birikmeye neden olmuş ve gezegenimsinin oluşum sürecini hızlandırmıştır.

Satürn ise Jüpiter‘den birkaç milyon yıl sonra oluşumunu tamamlamıştır, Jüpiter’den daha düşük kütleli olmasının nedeni etraftaki hidrojen ve helyum gazlarının büyük bir kısmının daha önce Jüpiter tarafından ele geçirilmesinden kaynaklanmaktadır.

olusumdiski54454545

Uranüs ve Neptün‘ün ise günümüzde bulundukları bölgede oluşma ihtimali düşük görülmekte. Materyal dağılımına bakıldığı zaman bu kadar fazla kütleye sahip olmaları oldukça zor görünmesinin yanında, oluşmaları için geçen süre de birkaç yüz milyon yıla yayılıyor.

Bu nedenle Uranüs ve Neptün’ün Güneş’e daha yakın bir konumda, Jüpiter ve Satürn civarlarında gezegen çekirdeklerini oluşturduklarını ve daha sonra yörüngelerinin değiştiğine dair geliştirilmekte olan yörünge göçü modellerinden Nice 2 Modeli günümüzde çalışılmakta. Bu teoriye göre, buz devleri ilk evrelerinde rezonansa (Satürn ve Jüpiter’in kütle çekimsel itimine) kapılmış durumdalar ve oluşumlarından milyonlarca yıl kadar sonra günümüzdeki yörüngelerine yerleşiyorlar.

Dış gezegenlerin yaşadıkları rezonanslar ve yörünge göçleri, Güneş sisteminin daha dış bölgelerindeki yapıların oluşumunda da pay sahibiler.

Neptün’ün ötesindeki Kuiper kuşağı, saçılma diski ve Oort Bulutu buzul yapıya sahip olan kuyruklu yıldızların kaynağını oluşturmaktalar. Güneş’ten oldukça uzakta olan bu bölgelerde yeterli kütle olmadığı için madde akresyona (kümelenmeye) uğrayamaz ve gezegenler oluşturamaz.

olusumdiski454784212

Çizimde yeşil yörünge Jupiter’i, turuncu yörünge Satürn’ü, turkuaz yörünge Uranüs’ü ve koyu mavi yörünge Neptün’ü temsil etmekte.

 

Kuiper kuşağı günümüzde 30-55AU uzaklıkları arasında olsa da Güneş sisteminin ilk zamanlarında daha yakın konumdaydı ve yoğunluğu daha fazlaydı. Dış kısımları 30AU’ya kadar uzanırken içeride günümüzde Neptün ve Uranüs’ün bulunduğu yörüngeleri kapsamaktaydı.

Modele göre Jüpiter ve Satürn’ün, yörüngelerini temizlerken ilk 500 milyon yıl içinde 2:1 oranında rezonansa girmeleri (yani Satürn Güneş çevresinde 2 tam tur atarken Jüpiter’in 1 tam tur atması), çevrelerinde kütle çekimsel bir itki etkisi oluşturuyor ve bu nedenle önceden Güneş’e daha yakın olan Neptün, Uranüs’ün ötesine doğru sürükleniyor. Bu sırada eski Kuiper Kuşağı kalıntılarını da süpürüyor.

Buz devlerinin yörüngelerinin ötelenmesiyle birlikte daha dışarıdaki ufak buz kayaları da onların çekim etkisiyle birlikte iç bölgelere doğru yöneliyorlar. Jüpiter’in etkisiyle çok daha eliptik ve parabolik yörüngelere girmeye başlayan bu cisimlerin bir kısmı sistemin dışına doğru yol almaya başlıyor ve Oort Bulutu’nun da bu şekilde olduştuğu tahmin ediliyor.

oort-cloud457821

Buz hattından daha yakınlarda ise diskteki katı materyalleri bünyesine katan gezegenimsiler, biraz daha karmaşık bir oluşum süreci geçirirler. Güneş sisteminin iç kesimindeki silikat ve metal ağırlıklı cisimler çarpışmalar ve birleşmeler sonucu 1km civarı boyutlara ulaştıklarında, yakın çevrelerini kütleçekimsel olarak etkileyebilen planetesimal’ler dediğimiz ufak parçaları; gezegenimsi parçalarını oluştururlar.

Bir çok planetesimal çarpışmalar sonucu dağılır fakat aralarından bazıları çekimlerine kapılan ve türbülanslar sonucu bünyesine dahil ettiği kaya parçalarıyla sıkışmaya ve büyümeye devam eder. Böylelikle boyutları birkaç yüz km’yi bulan gezegenimsileri oluşur.

Çarpışmaya ve birleşmeye süreçleriyle Güneş Sistemi’nin erken dönemlerinde 50-100 civarı Ay/Mars büyüklüğünde gezegenimsi oluştuğu tahmin edilmektedir. 100 milyon yıl süresince bu gezegenimsiler kütleçekimsel olarak birbirlerini etkiler, çarpışmaya ve büyümeye devam ederler ve sonucunda 4 adet iç gezegeni (Merkür, Venüs, Dünya, Mars) oluştururlar.

theia-smashes-earth

Bu dönemin sonlarına doğru ortalama büyüklüğü Mars kadar olan gezegenimsilerden birinin Dünya’ya çarpması sonucu ise uydumuz Ay oluşmuştur.

İlk 10 milyon yılda dış gezegenler, 100 milyon yılda ise iç gezegenler oluşmakta. Fakat hem iç gezegenlerin oluşum sürecinden arta kalan planetesimaller, hem de dış gezegenlerin yörünge değişimleri nedeniyle Kuiper Kuşağı ve saçılım diskine etki etmeleri nedeniyle; Güneş Sistemi’nde 4.1 ila 3.8 milyon yıl öncesine uzanan, iç gezegenlere yönelik yüksek sayıda meteorit çarpışmasının yaşandığı düşünülen Ağır Bombardıman Dönemi adı verilen bir zaman aralığı vardır.

Ay’daki en büyük kraterler incelendiğinde tarihlenmeleri bu zaman aralığına denk gelir. Dünya’daki suyun da bir kısmı bu dönemde çarpan buz meteoritlerinden gelmektedir.

ay45478211255

Geç Ağır Bombardıman dönemi sonlarında artakalan planetesimal’lerinin bazıları gezegenlerin yörüngeleri tarafından yakalanıp uyduları meydana getirir. Mars’ın uyduları ve Jüpiter gibi devlerin yüksek deklinasyona sahip uyduları bu şekilde yakalanmış cisimlerdir.

Asteroit kuşağı da iç gezegenlerin oluşum döneminde gezegenimsilerin olduğu bir bölgedir. Fakat dev gezegenlerin yörünge değişiklikleri döneminden kalma parçalar pek yoktur. Daha çok Ağır Bombardıman Dönemi sonrası arta kalan gezegenimsiler ve asteroidlerden oluşur. Jüpiter’in çekim gücü nedeniyle yörünge hızları, enerjileri yükseldiği için çarpışma şiddetleri birleşmelerini sağlamaktan çok parçalanmalarını sağlayacak düzeyde olmaktadır.

Hazırlayan: Taylan Kasar

Bu yazımız, sitemizde ilk olarak 1 Nisan 2015 tarihinde yayınlanmış, gözden geçirip hatalardan arındırılarak tekrar yayına sunulmuştur. 

Okumaya devam et

Çok Okunanlar