Connect with us

Fizik / Astrofizik

Gerçekliğin Doğası Üzerine -2

Bu yazıyı yaklaşık 15 dakikada okuyabilirsiniz.

Kendi duyularımıza %100 güvenemezsiniz. Güvenmemelisinizdir de. Onları yanıltmak kolaydır. Herhangi bir sebeple halüsinasyon görebilir veya fazla oturarak bacaklarınızı uyuşturabilirsiniz. Gerçekliğin doğası üzerine serüvenimiz devam ediyor… (Yazı dizimizin ilk bölümünü bu linkten okuyabilirsiniz.)

Umwelt’iniz ortalama bir insandan genişse, deli damgası yersiniz veya elbette gerçekten deli de olabilirsiniz. Sonuçta bir şeyi görmeniz, duymanız ve onun hakkında anılara sahip olmanız illa ki onun gerçek olduğu anlamına gelmez. Bu fikri de aklımıza kazıyalım çünkü ileride Occam’ın Usturası‘nı irdelerken bu bilgiye ihtiyacımız olacak.

Descartes gözlemlerin ötesindeki bu bağımsız gerçekliğin keşfine çalışmıştır. Rene Descartes, kendi odasında bir aynanın karşısında yaptığı düşünce deneylerinde ”Zihin ve Bedenin İlişkisini” araştırıyordu. Bu deneylerden birinde, bağımsız gerçekliği kesin olarak kanıtlanamayacak her şeyi bir kenara attı ve sahte olabilecek, sunulmuş ham maddeleri ve onlardan yaratılan ”gerçekleri” de yok saydı.

Ayna yoktu, oda yoktu, bedeni yoktu… Kapkara bir hiçlikte süzülen ve bütün bunları hayal eden bir beyin olduğunu düşündü. Sonra beyni de yok etti. Sonuçta neye benzediklerini gözlemlerimizden biliyoruz. Belki de bambaşka bir şey. Ama atamayacağınız bir şey. Descartes’ın felsefi cinneti bütün gerçekliğimizi başımıza yıktıktan sonra bu kaya gibi kavrama toslamıştır. Her ne olursa olsun bir şeyler olmalıydı bunları hayal eden en azından.

Sonuç olarak çok ünlü sözünü yazmıştır: ‘‘Düşünüyorum, öyleyse varım.”

Bu, ”Alice Harikalar Diyarında” ve (dolayısıyla) ”Matrix” filmlerinin ve bugünkü fizikçilerce bilimsel olarak geçerli kabul edilen ”Simulasyon Hipotezi” nin doğum anıdır. Descartes’dan beri bu konu bilimcilerin kafalarını kaşımalarına sebep olmuştur. Çünkü gerçeklik sübjektiftir ve doğası gereği bilimin sınırlarında, felsefe uçurumunun hemen kıyısında bulunur.

EINSTEIN VE GERÇEKLİK

Kant bir süre boyunca Einstein’ın en sevdiği felsefeci oldu. Gençliğinde okuduğu Kant’ın ” Saf Aklın Eleştirisi ” isimli kitabı, onu David

93573172976814ca9100f91ecfe9d15eHume, Ernst Mach gibileri okumaya ve ”gerçeklik hakkında nelerin öğrenilebileceği sorununu” araştırmaya yöneltti. Fakat burada kısaca belirtmek isterim ki Albert Einstein üniversite yıllarından beri bu ayrıma kesinlikle karşı çıkmıştır. ”Bu ayrımın hatalı olduğuna kanaat getirdim.” diye yazmıştı. Tamamen analitikmiş gibi görünen bir önerme -örneğin bir üçgenin iç açılarının 180 derece olması- Öklidyen olmayan bir geometride veya göreliliğin genel teorisinde olduğu gibi eğrilmiş bir yüzeyde doğru olmayabilirdi. Yani mutlak gerçeklere sadece aklımızla varamayız dedi. ”Bugün, sözü edilen kavramların, Kant’ın kendilerine atfetmiş olduğu kesinliği ya da içsel gerekliliği barındırmadığını elbette ki herkes biliyor.

Ayrıca Einstein, yaşlılığında verdiği demeçlerde de onu en çok etkileyen filozofun İskoçyalı David Hume olduğunu söylemiştir. David Hume’un da katı bir şüpheci olması Einstein’ın karakteriyle çok uyumludur. Hume, bu şüpheciliğini ”zaman kavramına” da uygulamıştır. ”Zaman fikrini, birbirini izleyen fikirler ve izlenimlerden yola çıkarak oluştururuz.” diye yazmıştır. ”Zamanın tek başına meydana gelmesi olanaksızdır.”. Mutlak zaman diye bir şeyin olamayacağı fikri, daha sonra Einstein’ın Görelilik Teorisi’nde yankılanacaktı.

Ancak Hume’un algılar ve gözlemlerle tanımlanamayan kavramlar hakkında konuşmanın anlamsız olduğuna ilişkin genel anlayışı, Einstein’ı, onun zaman hakkındaki spesifik fikirlerinden daha fazla etkilemiştir. Bunun etkileri, gençlik yıllarında Amsterdam’lı filozof Spinoza’dan alacağı tutkulu bir determinizmle birleşerek, daha sonraları Kuantum Mekaniği’nin revize ettiği yeni gerçeklik anlayışıyla savaşırken kendi iyiden iyiye gün yüzüne çıkacaktır.Einstein’ın kuantum mekaniği hakkında Bohr-Heisenberg grubuna karşı yürüttüğü büyük mücadele ”gerçeklik” hakkındaydı.

zaman-tumu-7116918

Zaman nedir? Nasıl var oldu? Ya da gerçekten zaman var mı?

Biliyoruz ki Bohr ve yandaşları, gözlemleyebileceğimiz şeylerin ötesinde nelerin olabileceği hakkında konuşmayı anlamlı bulmuyorlardı. Bilebileceklerimizin tümünün, deneylerimizin ve gözlemlerimizin sonucu olduğunu ve algılarımızın ötesine geçebilecek nihai bir gerçeklikten bahsedilemeyeceğini savunuyorlardı.

Kuantum mekaniği bir dereceye kadar özgür irade varlığını öne sürerken Einstein’ın Göreliliğinde özgür irade kaybolarak yerini bir tür 4 boyutlu ”kader”e bırakmaktadır.

”Gerçek” gerçeklik diye bir şey var mıydı?

Einstein’ın Gerçeklik kavramı 3 ana unsuru içermekteydi:

      1. Gözlem yeteneğimizden bağımsız olarak bir gerçekliğin varlığına duyduğu ”inanç”.

      2. Ayrılabilirlik ve yerelliğe olan ”inancı”. Yani nesneler ona göre uzay zamanda sadece belirli noktalarda bulunabilirler ve bu ayrılık onların tanımının bir parçasıdır.

      3. Kesinlik ve klasik determinizi içeren katı nedenselliğe olan ”inancı”.

Yukarıda inanç kelimelerini tırnak içine aldım çünkü bunlar sadece onun elinde yeterli gözlem ve veri olmadan doğruluğuna karar verme zorunluluğu hissiydi. Yani inançtı ve elinde fikirlerini kanıtlayacak bir şey de yoktu. Bunu belirtiyorum çünkü bugüne kadar yapılan deney ve gözlemler gösteriyor ki Einstein, büyük olasılıkla yanılmıştı.

9320252561113216

Niels Bohr ve Albert Einstein gerçeklik üzerine konuşuyorlar.

NOT: ” Tanrı zar atmaz. ”

    • Albert Einstein

Einstein, nükteli olarak, ”Tanrı zar atmaz.” derken tam olarak Spinoza’nın bu katı determinizmine olan desteğine atıf yapmaktaydı. (Bu determinizm tutkusu, öğretmeni Minkowski’nin onun fikirlerinin 4 boyutlu bir uzay zamanı öngördüğünü ve bunun da geçmişin bazı gözlemciler için yaşanacak, geleceğin de çoktan yaşanmış olmasını gerektirdiğini üstü kapalı haber verdiğinde doruğuna ulaşmıştı. Bu andan itibaren hayatını koyu bir deterministik olarak geçirdi.) O, kendi başlattığı kuantum çığının altında kalmıştı. Bilim hayatının ilk yarısını bir bilimsel devrimci olarak, ikinci yarısını ise bilimsel bir muhafazakar olarak geçirmişti.

(Kuantum mekaniğinin savunucularından Niels Bohr daha sonraları dayanamayıp ona, ”Herr Einstein, lütfen tanrıya ne yapıp ne yapmayacağını söylemeyi bırakınız!” diye yazacaktır.)

Buralarda kullanılan ”tanrı” kelimeleri, her zaman Spinoza’nın tanrı anlayışına atıf olmuştur. Seküler bir ailenin, (çocukluğundaki birkaç ateşli yıl hariç) asla Yahudiliğin dini kurallarını uygulamamış ve ailesi tarafından dayatılmamış oğlu olan ve hatta çocukluğunda bir süre Katolik okulunda da okuyan Einstein (Katolik Okulundaki din dersinde sınıf birincisi olup, katolik arkadaşlarına sınavlarda yardım etmiştir.), kendisini bazen bir ateist bazen de bir agnostik olarak tanımlamıştır.

Zürich’in yakınındaki Aarau kasabasında ETH’nin üniversite giriş sınavına 2. kez hazırlanıyor olduğu bir tam yıl içinde, yanında kaldığı dost ailenin babası olan Jost Winteler’dan çok etkilenen Einstein, yaşamı boyunca siyasi ve politik görüşlerinde onunla tutarlı bir paralellik izlemiştir.

Örgütlü din, okul, siyasi partiler, ordu ve akademik otoriteler de dahil olmak üzere örgütlü olan ve bireyi önemsizleştiren her otoriteye karşı tavrını o yıllardan beri korumuş; Ama bunlardan önce başka bir sürü vukuatının yanısıra, 5 yaşındayken öğretmenine sandalye fırlatmış (fırlatabilmiş), askere alınmamak için İtalya’ya yerleşip 17 yaşında Alman vatandaşlığından çıkmış ve bir İsviçreli olmaya parası yetene kadar da uyruksuz kalmıştır. Ömrünün sonuna kadar kendini barışa ve nükleer silahsızlanma çalışmalarına adamıştır.

* * *

Peki gerçeklik denilen bu kaygan zeminde neyi ”gerçek” kabul edeceğiz?

Gerçek olmak için gözlemlenmek de şart değildir. Onun yerine gözlemleri açıklaması bazen yeterlidir. Sunulan gerçekliklerden işe yarayanlarını seçeriz. Buna bilimde ”modele bağlı gerçeklik” denir. Paylaştığımız bu gerçekliği anlamak için onu tanımlayan bir sürü model arasından en iyi tanımlayanını seçeriz.

atom-model-el-665215

Atomun yapıtaşlarını, hatta atomun kendisini kim görmüş?

Örneğin nükleonların yapıtaşları olan ”kuarkları” ele alalım. Onları kimse görmemiştir. Tanımsal olarak bağımsızca gözlenemezler bile. Onlar kendi ürünlerimizdir. O halde neden gerçekler?

Şöyle düşünün, o protonun içinde bir şeyler var ve ”bu şekilde davranıyorlar”. Bunu biliyoruz çünkü gözlemliyoruz. İstediğiniz ismi veya şekli kuarkların yerine koyabilirsiniz. Ama nasıl işlediğini değiştiremezsiniz. Değiştiremezsiniz çünkü bu şekilde (kuantum kromodinamiklerinde belirtildiğince) ”düşününce” (bu gerçeklik modelinde) geleceğe dönük tahminlerimiz çok büyük kesinliklerde doğru çıkıyor! İşte kuarklar da bu yüzden gerçekler. İşe yaradıkları sürece varlar ve daha iyi ve kesin bir gerçeklik modeli ile değiştirilmeyi bekliyorlar. Şu anda en basit açıklamamız budur.

Bunu iyice anlamak için şöyle bir örnek vereyim:

Odanızdan çıktığınızda masanız odanızdadır. Mutfakta kendinize bir çay demlemeye gidersiniz ve sonra odanızın kapısını geri açtığınızda masa hala yerindedir. Bunu gözlemlediniz. Peki siz yokken odada gerçekten ne oldu? Bu gözlemleri açıklayan sonsuz olasılıkta şey olabilir. Örneğin masanız siz odanızın kapısını kapattığınız anda camdan fırlamış, uzaya çıkmış, Ay’ın etrafında iki tur atıp, dünyaya geri gelip, tam siz odaya girecekken son bıraktığınız pozisyona dönmüş olabilir. Bunun olmadığını inkar edemezsiniz çünkü gözlemlemediniz. Kulağınıza delice mi geliyor? Sonuna kadar haklısınız. İşte bu yüzden modele bağlı gerçeklik bizimle ve yasaları kaotik bir evrende yaşayanlar ve delileri ayıran çizgidir.

(Beynimiz bu konuda bizden bile önce davranır. Örneğin bir deneyde ters gösteren bir gözlüğü uzun süre takan bir denek, belli bir süre sonra tekrar her şeyi düz ”görmeye” başlar. Beyninizin occipetal lobu o verileri en iyi işe yaradıkları şeklinde size sunmaya gayret eder. İşin garibi ise denek gözlüğü çıkardıktan sonra bir süre ters görmüştür.)

Not: Neyin gerçek olmasının en mümkün olduğu hakkında daha somut bir algoritmaya ihtiyacınız varsa ve uzaylı kaçırmaları, ufolar veya karanlık bir odada gözünüze gözüken korkutucu şeyler söz konusu olduğunda Occam’ın Usturası adlı metodu kullanabilirsiniz. Bu metod sizin hayatınız boyunca kesinlikle bilemediğiniz her konuda (yani her konuda) yanılma veya kandırılma (aynı zamanda kendinizi kandırma) oranınızı en aza indiren bir rasyonel düşünme şeklidir. Bir gözlemi açıklayan açıklamalardan en yalın ve sadesi genellikle doğrudur. Buna burada daha fazla değinmiyorum.

BİLİNÇ VE ZİHİN NEDİR?

Bütün bilimler arasında bir açıklama hiyerarşisi vardır. ”Evren bir kitaptır ve matematik dilinde yazılmıştır. Onu okumak isteyenlerin matematik bilmeye ihtiyacı olacaktır.” diye yazmıştı Galileo Galilei. Matematikçiler fizikçilere gerekli araçları sağlar. Fizik ise kimyayı açıklar. Kimya da biyolojiyi. Biyoloji ise belki bir yere kadar Psikolojiyi açıklar.

Fakat şu anda bilinen hiç bir bilim, hatta neuroscience gibi son 15 yılda MRI makinelerinin (astronomideki teleskoba denk) icadıyla beynimizi (gerçeklik jeneratörümüzü) keşfimizde çığırlar açan bilimler bile ”bilinç”in kendisini açıklamaz. Neuroscience bu bilincin nasıl üretildiğini, beynimizin hangi bölümünün hangi bölümü ile ilişkiye girerek gerçekliğimizin (veya içsel filminizin) hangi yapıtaşını yarattığını açıklar.

cosmic-woman

Yaşadığınız, gördüğünüz, bildiğiniz her şeye ilişkin bildiğimiz tek şey, bunların beynimizde elektrik sinyalleri yoluyla oluşan algılar olduğu.

Neden bir ”içsel filme” sahip olduğumuz konusunda açıklama getiren bir bilim dalı henüz yoktur. Veya teknolojideki gelişmelere paralel olarak yeni yeni oluşmaktadır. Bu yüzden de genelde felsefecilerin oyun alanına dönüşmüştür.

Neden sadece kimyasal girdileri çıktılara dönüştüren bir fabrika gibi çalışan bir atomlar yığını olmakla kalmıyoruz? Neden bu içsel filmi yaşıyoruz?

Bu konuda bazı gelişmeler mevcut. David Chalmers’ın da üzerinde durulmasını istediği bazı teoriler mevcut. Panpsychism olarak isimlendirilen teoride ilk defa ”bilinç” bir formule indirgenmiştir. Fi sayısı ile belirlenen bilinç düzeyi, her şeyde bulunur. Kulağa çılgınca gelecek bir şekilde fotonlardan evrenin kendisine ve içindeki diğer her şeye, işleyebildiği bilgi oranında bir bilinç atfeder. İşin ilginç yanı fi sayısı ne kadar yaklaşırsa yaklaşsın asla 0 olamamaktadır.

Sonucu nereye bağlanırsa bağlansın, bu yaklaşım desteklenmelidir. Felsefenin matematiği olan mantık ile pozitivist bir yaklaşımın birlikte eridiği bu tarz bir bakış açısı, bilimsel olarak bu içsel filmimiz hakkında bize yakın gelecekte bazı fikirler verebilir. Artık felsefeciler de t-shirtlerinin üzerine basabilecekleri denklemler istiyor.

* * *

Bu içsel filminiz de büyük patlamayla oluşan bir sürecin doğal bir ürünüdür ve evrenin her yerinde farklı şekilde bilinç kazanan canlılar olmadığını düşünmek için sebebimiz yok. Bütün bunlar filmin sonundaki sürpriz sahne gibi Einstein’ın çok seveceği deterministik bir sonuca varabilir. Sonuçta ne kadar karmaşık olursa olsun evrendeki veriler sonludur ve bu yüzden hesaplanabilirdir (computable). Bunu ”şu anda” hesaplayamıyor olmak bizim yetersizliğimizdir, evrenin bir sihir numarası değildir. Sadece çok ama çok fazla sayıda girdi girmek gerekir.

Bir olayın sonucunu kesinlikle veremiyoruz diye bu olayı çok az anladığımızı ileri sürmek veya doğaüstü güçlere bel bağlamak gerçeklerden uzaklaştırdığı için irrasyoneldir.

Örneğin bir zarı attığınızda ne sonuç geleceği sadece ama sadece belli bazı faktörlere bağlıdır. Attığınız hız ve açı, zarın ve üzerine düşeceği yüzeyin yapıldığı maddenin özellikleri, ortamdaki kütleçekim ivmesi ve atmosfer bilgileri, rüzgar vesaire… Zarda hiç bir hokus pokus yoktur. Tamamen fiziğe göre çalışır ve hesaplanabilirdir. Sadece çok fazla girdi vardır ve bu da ”kelebek etkisi” denilen ufak bir olayın çok büyük değişikliklere yol açmasına sebep olur.

Beyin Hücresi ve Evren

Beyin Hücresi ve Evrenin çok uzaklardan bakıldığındaki rastlantısal benzeşimi.

Kelebek etkisi demişken, meteoroji de bu şekilde işler. Eğer atmosferdeki her hava molekülünün hız vektörlerini ve diğer bir sürü dağ gibi veriyi girebilseydik hava ”tahmini” yapmazdık. Sonuçta atmosferi çok iyi anlıyoruz tamamen fiziksel süreçlerden ibaret. Fakat yine çok fazla girdi var ve henüz sadece tahmin yapabiliyoruz.

Psikoloji ve bilincin kendisi de buna iyi bir örnektir. Bütün gerçekliğiniz, bu içsel filminiz: bütün renkler, sesler, kokular, dokunma hissiniz ve aldığınız tatlar ; karanlık ve sessiz bir kutu olan beyninizdeki elektrokimyasal sinyallerle üretilir. Onun tek gördüğü budur.

Bu sinyallerin kaynağı ister beynimizin kendisi, isterse gerçekten var olan duyu organlarımız aracılığıyla bağımsız bir gerçeğin yorumları olsun; olan şey saf fiziktir. Düşüncenin kendisi en sonunda elektronlara indirgenir. Bu elektronlar, tıpkı bilardo masasındaki topların oyun başlangıcında dağılırken kendiliğinden beklendiği hareketleri yapmalarına rağmen nereye gideceklerini önceden tahmin etmesinin zor olduğu bilardo topları gibi beynimizde birbirlerine çarparak o nörondan diğerine fırlarlar. Bu sadece fiziktir. Zor ve kompleks bir fizik.

Tıpkı meteoroloji gibi, (meteorolojiden çok ama çok daha az kesinlikte olmak üzere) psikoloji de bu kompleks fiziğin yaklaşımsal tahminlerini yapar. O kadar açılmaya meyillidir ki, yaklaşımları bazen bilimsel olmaktan bile çıkar. Kuantum bilgisayarları icad edilene kadar aramızdaki en bilgili kişiler de onlardır. (Bir sıkıntınız olduğunda psikoloğa gitmekten vazgeçmeyin.) Eğer bunları hesaplayabilseydik, bundan iki yıl sonra canınızın kahvaltıda ne çekeceğini hesaplayabilirdik.

Peki bu bize özgür irademiz hakkında ne söyler? Bilmiyorum. Görünüşe göre herkesin kendi fikri var. Fakat ortam kızışıyor ve bu da cevaba yakın olduğumuzu düşündürüyor.

Hidrojen atomlarına 14 milyar yıl verirseniz bilinç kazanıp kendilerinin nereden geldiğini sorgulamaya başlarlar.

– Carl Sagan

Beynimizin evrimsel süreçte hayatta kalmamıza yardım edip bizi atik ve hızlı karar veren bir hayvana dönüştüren bir mekanizması var. Yukarıda bahsettiğim tarzda karmaşık şeylere karakter yüklemeye eğilimli.

gerçekliğin doğası

Bu gerçek mi?

Eski zamanlarda yırtıcı hayvanları sadece tehlikeli değil de kötü kalpli veya şeytani olarak düşünmemizin sebebi budur. Bilgisayarımız takıldığında ona sinirlenmemizin, arabamız bozulduğunda tekerine tekme atmamızın (belki sadece benimdir) veya düşen bir uçaktaki pilotun uçağı kurtarmaya çalışırken ”Hadi kızım!” diyerek bağırması bu yüzdendir. Halbuki bütün bunlar tamamen fizikseldir ve mekaniktir.

Sadece o anda hesaplayamayız, gözleyemeyiz ve dolayısıyla o anda bilemeyiz.

İnsan beyninin kendi kendisinin kompleksliğine de karakter yüklemiş olması da muhtemel. Belki de özgür irade Einstein’ın dediği gibi bir illüzyondur. Bir şeyi sorumsuzluğunuz veya karakteriniz yüzünden kaçırdığınızda, başarısızlığa uğradığınızda, aptallık ettiğinizde kendinize kızmanın anlamı yoktur. Kafanızdaki o elektronun oraya varacağı daha büyük patlama anında belliydi belki de.

* * *

Neyin ”kesinlikle” gerçek olduğunu söyleyerek sonuca bağlamak istiyorum bu makaleyi. Belki de Matrix filmindeki gibi bütün bunlar çok güçlü bir bilgisayarın simülasyonudur ve siz aslında sadece üzerine elektrotlar bağlı olarak kavanozda duran bir beyinsiniz. Bunun geçerli bir hipotez olduğunu görmüştük. Bu durumda yediğiniz meyve ”gerçek” değildir. Ama onun için hissettiğiniz açlık, onu yerkenki aldığınız haz ve onun tadı gerçektir. Bunlar tamamen sizin ürününüzdür. Gökkuşağı belki de gerçek değildir. Ama renkleri gerçektirler.

Simülasyon Hipotezi

Kısacası Matrix filminde kel bir oyuncu vardı, ”Bu hamburger bir kod olabilir ama tadını seviyorum. Ve bu gerçeklik bana yeter.” demişti. Sonra ajan Smith ile anlaşıp filmin kahramanları olan arkadaşlarına ihanet etmişti; belki de yıllardır o haklıydı…

Belki daha iyi hatırlarsınız: İşte bu arkadaştı.

Sonuçta uyandıkları bir simülasyon olabilir, uyanacakları gerçeklik de, ve bir sonraki de. Bunun bir sonu yok. Demek ki bizden bağımsız bir gerçeklik de yok. Elimizdekiyle yetinip onu iyice anlamamız ve sakin olup ne olup bittiğini çözene kadar birbirimize sahip çıkmamız gerekiyor.

Cengiz Büyükuncu

Kapak fotoğrafı: http://m10tje.deviantart.com/journal/R-A-C-H-update-tutorials-334371856

Fizik / Astrofizik

Negatif Enerji ve Negatif Kütleli Madde Nedir?

• İçerik Üreticisi:

Bu yazıyı yaklaşık 3 dakikada okuyabilirsiniz.

Negatif enerji ve negatif kütle, özellikle “warp sürüşü” veya “solucan deliği” gibi kavramların konuşulduğu ortamlarda sıklıkla dile getiriliyor.

Bu kavramların gerçekliği her ne kadar tartışmalı olsa ve bilim insanlarının büyük kısmı tarafından spekülasyon olarak görülse de, ne olup olmadıklarını açıklamak gerektiğini düşündük.

Negatif Kütleli Madde

Negatif kütleli madde denildiğinde çoğumuzun aklına Antimadde ya da Karanlık Madde geliyor. Ancak, bunlarla karıştırmayınız. Teorik fizikte, negatif kütle sahibi madde, 0 ağırlıktan daha düşük kütleye sahip, “hiçbir şeyden daha hafif” diye tabir edebileceğimiz ve kütle çekimi tarafından çekilmeyen tersine itilen spekülatif bir egzotik maddedir.

Bir ya da daha fazla enerji durumunu ihlal eder. Bir tartı üzerine koyarsanız tartıya ters basınç uygular ve -10 kg gibi bir sonuç görürsünüz. Eğer evrende negatif kütleli egzotik madde çeşitleri varsa, gezegenlerin, yıldızların hatta galaksilerin kütle çekimleri tarafından çok uzaklara itilmiş ve belki de hiçbir zaman ulaşamayacağımız galaksiler arası derin uzayda bulunuyor olabilirler.

Peki fizik kanunlarını ihlal ediyorsa nasıl gerçek olabilecekmiş gibi konuşabiliyoruz? Böyle bir şeyin bizim evrenimizde bulunmaması gerekmez mi? Katı haldeki negatif kütleli madde, ancak “mükemmel sıvı” diye tabir edilen bir halde negatif kütle sahibi maddede bulunabilir.

Kanada, Montreal Üniversitesi’ndeki kozmologlar Saoussen Mbarek ve Manu Paranjape mükemmel sıvı haldeki negatif kütle sahibi bir maddenin hiçbir enerji durumunu ihlal etmediğini açığa çıkardı. Gereken tek şey, bu maddeyi Big Bang esnasında üretmiş olabilecek bir mekanizma. Kısacası şu anda böyle bir maddenin gerçekliğini ne inkar edip imkansız diyebilecek ne de onaylayabilecek bir durumdayız.

Negatif enerji

Negatif enerji, adından da anlaşılacağı üzere eksi değerleri olan enerji seviyelerine denir. Karanlık Enerji ile karıştırmayınız. Tamamen kuramsal olan negatif kütleli madde, aksine negatif enerji çeşitli kuantum durumlarında stabil olmayan şekilde mümkün olabiliyor.

Bununla birlikte karakteristik olarak negatif enerjiye oldukça benzeyen ancak negatif enerji sayılmayan ve çok küçük ölçeklerde gerçekleşen Casimir etkisinden de bahsedelim. 1933’te Hendrik Casimir, Kuantum Teorisi’nin kanunlarını kullanarak garip bir öngörüde bulundu. Casimire göre; (alttaki resimde görülen) vakum içerisindeki iki adet paralel, yüksüz metal plaka birbirlerini itecekti.

Normalde yüksüz olan bu plakaların sabit durması gerekmekteydi ancak bu iki plaka arasındaki vakum boş değildi, gerçekliğe giriş, çıkış yapan sanal parçacıklar ile doluydu. Bu noktada sanal parçacıklarla ilgili yazımıza göz atmanız faydalı olacaktır. (Bkz. Belirsizlik ve Kuantum Dalgalanmaları)

Bu vakum, çok kısa ömürlü elektronların ve pozitronların ortaya çıkıp birbirlerini imha ederek yok olduğu kuantum aktiviteleri ile doludur. Normalde bu yoktan var olan ufak madde-antimadde olayları Enerjinin Korunumu Kanunu’nu ihlal ediyor gibi görünse de; belirsizlik ilkesi sebebiyle bu küçük patlamalar inanılmaz ölçüde kısa ömürlü olup, net enerjide değişikliğe sebep olmamaktadır. Böylece Casimir bu kısa ömürlü olayların plakalar arası vakumda bir basınç yaratacağını ve bu basıncın plakaları iteceğini keşfetti. Normalde bu plakalar birbirinden uzakken bu etki gerçekleşmezken, plakalar yaklaştırıldıkça aralarında bu enerji açığa çıkmaya başlar.

Bu enerji 1948’de laboratuvarda, Casimir’in öngördüğü gibi gözlemlendi. Bu enerjiyi ölçmek için inanılmaz hassas ve sanat eseri sayılabilecek ekipman gerektiğinden, 1996’da ilk hassas ölçüm yapıldığında bu etkiden kaynaklanan basıncın bir karıncanın ağırlığının 30 binde 1’i kadar olduğu bulundu. Tahmin ettiğiniz gibi uzay-zamanı bükmek için çok yeterli değil.

Negatif enerjiye başka bir örnek de, kara deliklerin buharlaşma sürecinde açığa çıkan ve Hawking radyasyonu mekanizması sırasında oluşan kısa ömürlü sanal parçacıklar verilebilir.

Hazırlayan: Berkan Alptekin

Okumaya devam et

Fizik / Astrofizik

Hologram Evren Kavramı Ne Anlama Geliyor?

• İçerik Üreticisi:

Bu yazıyı yaklaşık 6 dakikada okuyabilirsiniz.

Yaşadığımız evrenin aslında bir hologram olduğu söylemi son yıllarda fizik ile ilgili ortaya çıkan en büyük yanlış anlamalardan birine sebep olmakta. Bu yazıda konuda geçen kavramları ele alacağız, fizikçiler aslında ne demek istiyor onu açıklayacağız.

Hayır evrenimiz hologram değil. Bu sözcük evrenin olması gerektiği düşünülen bazı özelliklerini tanımlamak için kullan bir metafor. Bilimkurguda rastladığımız “bir simülasyonun içinde yaşama” eylemini sağlayan hologramla ilgisi yok. Bunu netleştirelim ve konunun bel kemiğini oluşturan Holografik İlke aslında ne demek ona bakalım.

Holografik İlke

Öncesinde başka bir konuya, entropiye bakmamız gerekiyor. Bir kara deliğin olay ufku sınır kabul edilir ve entropisi olay ufku yüzey alanının 4’e bölünmesiyle bulunur. Evrende, içinde madde barındıran, kara delik dışında bir bölge düşünün. Bu bölgenin kara deliğe benzer bir şekilde toplam entropisinin bir limiti var mıdır?

Biraz düşünecek olursak; eğer bu bölgenin içine madde eklemeye başlarsak bölgenin entropisini arttırırız. Fakat madde eklemeye devam ederken belli bir noktadan sonra o bölgede o kadar çok madde birikir ki, sonunda bu bir karadelik oluşturur.

Yani evrende bir bölgenin entropisini sonsuza kadar arttıramıyoruz. Limit var; çünkü entropi arttırmak için aynı hacime daha çok madde eklemek eninde sonunda kara delik oluşturuyor. Dolayısıyla evrende bir bölgede olabilecek en yüksek entropi nedir diye merak ediyorsak; o bölgenin yüzey alanının 4’e bölmemiz gerekiyor. (sanki kara deliğin entropisini ölçüyormuş gibi)

Entropiye aslında bir bilgi ölçeği de diyebiliriz. Evrendeki her madde, her parçacık, her dalga bilgi, yani enformasyon taşır. Bir yerde ne kadar çok madde varsa, o kadar çok bilgi vardır, dolayısıyla entropi o kadar yüksektir. Bu çıkarım bir fiziksel ilke, yani uymak zorunda kalınan bir kural. Holografik ilke adı verilen bu kural kısaca demekte ki; bir miktar hacmin içerisindeki bilgi miktarı, o hacme tanımlanan toplam bilgi miktarını geçemez.

Fizikte ilke/prensip adı altında geçen tanımlamalar, bir konuyla ilgili teorileri formülize etmek için kullanılır. Holografik ilke ise, Kuantum yerçekimi teorisini oluşturabilmek için kullanılması gereken bir ilkedir. Kuantum yerçekimi teorisi oluşturmak için işe koyulduysanız, bulduğunuz teori ya bu ilkeye uymak zorunda, ya da bu ilkeyi ihlal ediyorsa neden ihlal ettiğini çok iyi açıklayabilmek zorunda. Yoksa, teoriniz tutarsız olur.

Yapısı gereği deneysel olarak test edilebilecek tahminlere sahip olmayan bu gibi bilimsel ilkeler, belirli bilimsel teorileri oluşturmak için kullanılırlar yukarıda belirttiğimiz gibi. Dolayısıyla, prensibin tek başına varlığı, evrenin hologram olduğu veya evrenin bu prensibe gerçekten uyduğu anlamına gelmez.

Evrenin Holografik ilkeye uyup uymadığı ifadesi ise test edilmesi gereken bir önermedir. Fakat bunun yapılabilmesi için önce işe yarar, çalışan bir kuantum yerçekimi teorisi oluşturmak gerekiyor.

Dolayısıyla, eğer biri size evrenin hologram olduğundan bahsediyorsa, o kişinin aslında neyden bahsettiği hakkında bir fikri olmadığı söylenebilir. Medyada son zamanlarda çokça ortaya çıkmaya başlayan evrenin hologram olduğu kanıtlandı benzeri haberler de benzer bir şekilde yanıltıcı ifadelerle son zamanlarda yapılan çalışmaları anlatmaya çalışıyor.

The Matrix, hologram kavramının ötesinde, dijital sanal bir evren tasvir eder.

Bu haberlerin yapıldığı makaleler aslında biri AdS diğer CFT adında iki gerçek olmayan teorinin bağlantısını ifade eden AdS/CFT konjektürü adlı matematiksel tanımlamaya dayanmakta ve bu, yaşadığımız evren ile ile ilgili bir şey de söylememekte.

Konuyu genel hatlarıyla anlayabilmeniz için bu iki karışık matematiksel teorinin detaylarını bilmeniz gerekmiyor merak etmeyin. Sadece uzayı farklı şekilde tanımlayan iki farklı matematiksel modelin olduğunu ve bu ikisinin birbirleriyle ilişkisinin üzerine çalışıldığını söylüyorum. Aşağıda iki teoriye de kısaca değineceğim.

O zaman neden bu AdS/CFT’ye ihtiyaç duyuluyor?

Yukarıda anlattığımız holografik prensip sadece sözlerden oluşan bir şey ve sözler keskinlik konusunda iyi değillerdir, hesaplanamazlar. Fizikçiler düşünceleri matematiksel denklemler halinde yazmayı severler, böylece bahsedilen şeyin niteliği ve niceliği analiz edilebilir olur.

AdS/CFT konjektürü de bu şekilde holografik prensip’e dayanan matematiksel bir modeldir. Fakat bu matematiksel model gerçek değil yani bizim evrenimizi tanımlamıyor. Peki madem gerçek değil, o zaman neden üzerinde çalışıyor?

Fizikte “Oyuncak Teori” olarak da bilinen bir kavram bu. Gerçek olmadığı bilindiği halde bu gibi teorilerin üzerinde çalışılmasının iki nedeni var.

1 – Basit bir model olduğu için daha karmaşık ve gerçek olan modellerde yapılamayan hesaplamaları yapmaya olanak sağlamaları.

2 – Gerçekçi bir modelimizin olmadığı bir alanda, elimizdeki verilerle ne yapabildiğimize bakabilmek.

Peki o zaman AdS/CFT konjektürü bize ne anlatıyor? Teknik detayına girmediğimizde bunun sicim teorisinde tanımlanan D3-zarıyla uğraştığını söyleyebiliriz.

Bu zara iki farklı perspektiften bakılıyor. Bir perspektiften bakıldığında 5 boyutta (kuantum) yerçekimi teorisi gibi duruyor, buna AdS tarafı deniliyor. Diğer perspektiften yani CFT tarafından bakıldığında ise yerçekiminin dahil olmadığı 4 boyutlu teori gibi duruyor.

adc67216f99baacc75f599e955427160

Fakat zar aynı zar olduğu için, hangi perspektiften bakarsak bakalım aynı şekilde davranması gerekmekte. Yani aynı hesaplamaları 5 boyutlu teoride de 4 boyutlu teoride de yaptığımızda aynı sonuçları almalıyız.

Bir şeyin bu şekilde iki farklı tanımının olması, yani modelin ikili yapısı, hesaplamalar yaparken oldukça kullanışlı, faydalı oluyor. Hesaplanmak istenen şey eğer yerçekiminin dahil olduğu AdS tarafında hesaplanması çok zor ise, yerçekimsiz olan CFT teorisinde hesaplanarak bulunabiliyor.

AdS/CFT modeline konjektür yani varsayım sıfatını vermemin nedeni daha tam kanıtlanamamış olması. Fakat bu konjektürün doğru olabileceğine dair birçok veri var. Bunlar yukarıda anlattığımız gibi hesaplamaların iki farklı perpektiften de bakılarak yapılıp karşılaştırılmasıyla ve sonuçların tutmasıyla olmakta. Fakat sonuçların her zaman tutarlı olacağı henüz söylenememekte.

Bilim sitelerinde “fizikçiler evrenin hologram olduğuna dair kanıt buldular” diye haberlere rastladığınız zaman, o habere konu olan makalenin aslında demek istediği şey AdS/CFT konjektüründe tutarlı olan bir hesaplama daha bulunduğu. Fakat tekrar edelim, bu bizim evrenimizle ilgili bir şey söylememekte, sadece gerçek olmayan model hakkında daha yeni bir bilgi vermekte.

Modelin gerçek olmamasının nedenlerine gelecek olursak:

  • Model sırtını sicim teorisine dayamakta ve aslında sicim teorisi de “Oyuncak Teori” sınıfına girmekte. Sicim teorisi evrenimizi ile ilgili gerçek bir tanımlama yapmamakta. Sanal bir evren tanımı yapmakta ve bu evren bazı açılardan bizim evrenimiz ile benzerlikler taşıyor fakat bazı açılardan oldukça farklı.

  • Yerçekiminin de dahil olduğu perspektife AdS deniliyor çünkü bu evreni “Anti de Sitter” adında özel bir geometri ile tanımlıyor. Evrenimiz bu geometriye sahip değil. Hatta bunun tam tersi olan “de Sitter” ile tanımlanmış durumda. Dolayısıyla AdS bizim evrenimize bağlı bir tanım yapmıyor.

  • Yerçekiminin dahil olmadığı perspektif olan CFT ise evreni Conformal Simetri adında özel bir geometri ile tanımlıyor. Bu nedenle adı Conformal Field Theory/Conformal Alan Teorisi. Fakat evrenimiz hem conformal simetriye sahip değil hem de yerçekimi var. Dolayısıyla CFT de bizim evrenimize bağlı bir tanım yapmamakta.

Sonuç olarak; AdS/CFT konjektürü sanal bir evren modeli tanımlıyor ve bu tanımladığı evren bizim evrenimiz değil. Holografik ilkenin matematiksel bir karşılığı. Oldukça önemli olmasına ve teorik fizikte bir çok uygulama alanı olmasına rağmen bizim evrenimizle bir ilişkisi yok.

Yine de Holografik ilenin gerçek olmayan matematiksel bir modeli olan AdS/CFT çalışmaları, ileride bizim evrenimize de uygulanabilecek gerçek bir model için zemin hazırlamakta ve serimizin ilk yarısında belirttiğimiz gibi işleyen bir kuantum yerçekimi teorisi ortaya çıktıktan sonra holografik prensibin empirik olarak sınanmasının da önü açılacak.

Hazırlayan: Taylan Kasar

Konuyla ilgili diğer yazılarımız:
Evren bir simülasyon mu? – 1
Evren bir simulasyon mu? – 2

Okumaya devam et

Fizik / Astrofizik

Yıldızların Rengi ve Sıcaklığı Arasındaki İlişki

• İçerik Üreticisi:

Bu yazıyı yaklaşık 3 dakikada okuyabilirsiniz.

Yıldızların rengi ve sıcaklığı arasındaki ilişki bazen kafa karıştırıcı olabiliyor. Astronomi sitelerinde vakit geçirmeyi seven pek çoğumuz şu bilgi notuyla karşılaşmışızdır; ”Zannedilenin tersine mavi yıldızlar, kırmızılardan çok daha sıcaktır.” Peki ama neden?

Günlük yaşamımızdan da bildiğimiz üzere, ısındığı için ışık yayan cisimlerin yaydıkları ışığın rengi, cismin sıcaklığıyla ilgilidir (fluoresan ve led türü soğuk ışık kaynakları şu anki konumuz değil). Yıldızlar dahil olmak üzere, ısısı nedeniyle ışık yayan tüm cisimler aslında kara cisim ışıması yaparlar.

Örneğin kırmızımsı – turuncu renkte gördüğümüz elektrikli sobanın çubuklarının sıcaklığı 2.000 santigrat derece kadardır. Evlerimizde kullandığımız Edison tipi bir akkor ampulün içindeki flaman sarımsı ışık yayar. Bu flamanın sıcaklığıysa yaklaşık 3.000 derece civarındadır.

hand-holding-lit-lightbulb

Eğer bir cismi daha fazla ısıtabilirsek renginin giderek maviye döndüğünü görebiliriz. Bir odunu yaktığımızda, odunun bitişiğinde yanmakta olan ateş mavi renktedir. Yanan ateş, kaynağından uzaklaştıkça, alevi oluşturan partiküller soğuduğu için maviden kırmızıya doğru kayar. Bunu bir çakmak veya kibrit yaktığımızda da gözleyebiliriz.

Örneğin bir kibrit yanarken ateş, kaynağına en yakınken mavi renktedir. Fakat, kaynağından uzaklaşıp havadaki görece düşük sıcaklıkla karşılaştıkça yavaş yavaş sıcaklığını kaybeder, mavi renkten beyaza, beyazdan sarıya, sarı renkten de kırmızıya döner ve gözden kaybolur.

Tabi bu arada şunu belirtmek lazım; Dünya üzerinde gördüğümüz alevlerin rengini sadece sıcaklık belirlemez. Alevi oluşturan kimyasal madde de renge etki eder. Kibrit ve çakmak örneğinde mavi alevli kısım aslında 1.000 santigrat dereceden düşük sıcaklıkta olmasına rağmen mavidir, çünkü alevi oluşturan kimyasallar bu rengi yayarlar. Ancak, bunu göz ardı edersek, “öğretici örnekleme” açısından uygundur.

1010419_391319711014514_490058086_n

Türlerine göre yıldızlarının evrende bulunma oranları. Her 1 adet O-B sınıfı yıldıza karşı diğer yıldız türlerinden kaç tane olduğu. Şu makalemize de göz atabilirsiniz.

 

İşte yıldızlarda da durum buna çok benzerdir. Elbette yıldızlarda alev yoktur. Sıcaklık, yıldızın çekirdeğindeki nükleer reaksiyon sonucu alevsiz olarak oluşur. Daha başka bir deyişle, yıldızları ısıtan şey ateş değildir. Fakat bizler Dünya üzerinde sıcaklığın sadece “kimyasal bir reaksiyon olan” ateş ile oluştuğunu gözlemlediğimiz için, yıldızları da birer alev topu olarak düşünürüz. Bu, içine düştüğümüz bir yanılgıdır.

Sıcak yıldızların ışığı mavi, soğuk yıldızlarınkiyse kırmızıdır. Yıldızın rengini, çekirdek bölgesindeki nükleer reaksiyonun miktarı belirler. Büyük ve sıcak yıldızlarda bu reaksiyon çok fazla olduğu için yıldız da orantılı olarak o kadar fazla ısınır ve rengi de bununla bağlantılı olarak kırmızıdan maviye doğru (sırasıyla kırmızı, sarı, beyaz, mavi) değişir.

Burada kırmızı yıldızlara soğuk demekteyiz fakat soğuk değildirler, bu “göreli” bir tanımlamadır. Mavi renkli yıldızlar 30.000 santigrat dereceden fazla sıcak olabilirken, kırmızı renkli yıldızlar 2.500 – 3.000 derece kadar sıcaktırlar. Haliyle 30.000 derecelik bir sıcaklığa karşı 2.500 derece, 12 kat soğuktur.

Yıldızların renkleriyle sıcaklıklarının ilişkisini gerçek anlamda anlayabilmek ve yıldız asrofiziği açısından ele alabilmek için; şu üç yazımızı muhakkak okumalısınız:

  1. Tayf
  2. Tayf Türleri
  3. Kara Cisim Işıması

Hazırlayan: Kemal Cihat Toprakçı
Bu yazımız, sitemizde ilk olarak 8 Mart 2015 tarihinde yayınlanmış, güncellenerek tekrar yayına sunulmuştur.

Okumaya devam et

Fizik / Astrofizik

Güneş Sistemi’nin Oluşumu: Modern Laplace Teorisi

• İçerik Üreticisi:

Bu yazıyı yaklaşık 10 dakikada okuyabilirsiniz.

Modern Laplace Teorisi günümüzde Güneş Sistemi’nin oluşumunu en iyi anlatan ve en kabul görmüş teoridir. Ancak, Güneş Sistemi’nin oluşumunu açıklamaya çalışan teorileri geçmişten günümüze doğru anlatmaya çalıştığımız yazı dizimizi eğer okumadıysanız, öncelikle birinci ve ikinci bölümlerini okumanızı öneririz.

Laplace’ın ortaya attığı orjinal teorideki açısal momentum sorunu Roche’nin denemesinden başlayarak 100 yılı aşkın süre boyunca çözülmeye çalışılmış, bir çok farklı model denenmiştir. (Açısal momentumun ne olduğu ve nasıl bir sorun yarattığı yazı dizimizin önceki bölümlerinde anlatılmıştı.)

Bu uğraşlar sayesinde Güneş Sistemi’nin oluşum sürecindeki farklı olaylara zaman içinde açıklıklar getirilmiş, 1974’te astronom Andrew Prentice tarafından Modern Laplace Teorisi adı altında daha bütünlüklü bir teori oluşturulmuştur. Teori, kendisinden birkaç sene önce ortaya konulan Güneş Nebulası Teorisi’nin bir devamı gibi durmasının yanında gezegen oluşumlarını ele alışı Protoplanet Teorisi ile benzerlik taşır.

Güneş Sistemimizi oluşturan ana nebulanın çapının 20 parsek (1 parsek = 3.26 ışık yılı, yani 31 trilyon km) olduğu düşünülmektedir. Güneş sistemi bu nebulanın sadece 0.01-0.1 parsek çapındaki bir parçasının çökmeye, yoğunlaşmaya başlamasıyla meydana gelmiştir.

orion_nebula_complex_wide

Fotoğrafta görülen Orion bulutsusu 3.5 parsek (1 parsek = 3.26 ışık yılı) büyüklüğündedir ve 700 civarı yıldıza ev sahipliği yapmaktadır.

 

Güneş öncesi nebulası adını verdiğimiz bu parçada yoğunlaşmaya neden olan, daha doğrusu katalizör görevi gören şeyin süpernovalardan yayılan şok dalgaları olabileceği tahmin edilmiştir. Bu şok dalgaları sayesinde ortamdaki gaz ve toz kümelenmeye başlar ve kütle çekimi etkisiyle yıldız sistemleri meydana gelir. Süpernovalar kütlesi oldukça yüksek olan ve dolayısıyla kısa ömürlü olan yıldızların ömürlerinin sonuna gelince infilak etmeleri sonucu etrafa şok dalgasıyla birlikte içlerindeki materyali de saçarlar.

Demir elementinin kararsız izotoplarından olan 60Fe ve benzer şekilde aluminyum izotopu 26Al, sadece süpernova patlamalarıyla ortaya çıkan ürünlerdendir ve Dünya’ya düşmüş meteoritlerde bu izotoplar bulunmuştur. 60Fe daha eser miktarda bulunduğu için Güneş Sistemi’ni oluşturan etkiyi yaratacak patlamadan çok daha önceki çevrimlerden arta kaldığı düşünülmektedir fakat 26Al miktarı, etrafta 20 Güneş kütlesinden daha büyük bir yıldızın Güneş Sistemi oluşmadan önce patladığını ve sistemimizi oluşturacak gaz ve toza etki ettiğini doğrulamakta.

Supernova’dan gelen şok dalgasının etkisiyle kümelenmeye başlayan bulutsu kütle çekimsel olarak baskın hale geldiğinde çökmeye başlar. Merkezde yoğun bir çekirdek oluştuktan sonra kütle çekimsel alan büyüyüp etraftaki gazları da çekmeye başlar ve daha da büyür. Akresyon adı da verilen bu süreçle etraftaki gazlar sistemin içine dahil edilir ve sistem dışarıdan bağımsız bir hale gelir. Bu andan itibaren içsel süreçlerle evrilme devam eder.

Merkezdeki çekirdek, etrafından madde aldıkça daha az hacme sıkışan bulutsu açısal momentumunu korumak için çok daha hızlı bir şekilde dönmeye başlar. (bir patencinin kendi etrafında dönmeye başladığı sırada kollarını ve bacaklarını bir araya topladığında hızlanması da aynı nedenden dolayıdır.)

Sisteme yandan baktığımız zaman, nebulanın yukarısından ve aşağısından çekilen parçacıkların çarpışmaları ve dikey enerjilerini bu şekilde yok etmeleri nedeniyle sistem yüksekliğini kaybedip genişleyerek bir disk şeklini almaya başlar. Gezegenlerin Güneş ile neredeyse aynı düzlemde yer almalarının nedeni budur.

starbirthdisc477512

Bu ilustrasyonda görülen başlangıç diski ortalama 100 AU genişliktedir. Merkezinde proto yıldız olan bu diskte açısal momentum ve sıcaklık nedeniyle gazlar kenarlara doğru gittikçe genişleyen bir biçimde ilerlerken daha ağır maddeler kütle çekimi etkisiyle içeriye doğru sürüklenir. Modern Laplace Teorisi’ne göre nebula ortalama 100,000 yıl içinde disk şeklini almıştır.

 

Disk küçülmeye devam ederken 10 milyon yıl içinde gaz yapılı dış gezegenler oluşur. Kayaç gezegenlerin oluşması 10-100 milyon yıl içinde gerçekleşir. 50 Milyon yıl içinde ise merkezdeki T-Tauri benzeri proto yıldızın (ön yıldız) kütlesinin yarattığı basınç ve sıcaklık Hidrojen füzyonu başlatacak seviyeye ulaşır, Güneş doğar.

Maddenin nasıl dağıldığına bakacak olursak; bu disk oluşumu sırasında Güneş’e 4 AU (1 AU “astronomik birim” = 150 milyon km) kadar yakın konumlarda hafif gazlar sıcaklık ve basınç dolayısıyla kendilerine yer bulamazken yüksek sıcaklıklarda yoğunlaşma özelliğine sahip olan Kalsiyum ve Alüminyum açısından zengin oluşumlar Güneş’e yakın konumlarda toplanmaya başlarlar.

Kalsiyum-Alüminyum oluşumlarının biraz daha ötesinde ise milimetre ve daha ufak ölçeklerde Krondül adı verilen ve serbestçe dolaşan erimiş damlalar olan silikat küreleri oluşur. En yaygın meteorit tipi olan Krondrit’lerde yani kaya meteoritlerinde bulunurlar.

Yoğunlaşan bu gibi moleküllerin ve demir, nikel alüminyum gibi metal elementlerinin birleşmesiyle oluşan taş ve kaya parçacıkları Güneş Sistemi’nin iç kesimlerinde, çapı 10km’ye varan, Planetesimal‘ler adını verdiğimiz yapıları meydana getirmeye başlarlar ve disk halkalı bir yapıya dönüşme sürecine girer.

Allende_meteorite

Fotoğrafta Allende meteoritinden bir kesit görülmekte. Meteoritin üstündeki beyaz lekeler Güneş sisteminin ilk zamanlarında oluşmuş olan Kalsiyum-Alüminyum’lardır.

 

Gaz ve tozdan oluşan bu diskin iç kısımlarında su molekülleri sıcaklıktan dolayı kristalleşip donamaz. Dış kısımlara doğru gidildikçe, buz hattının ötesinde su molekülleri donmaya başlar. İç kısımlardaki metaller ve silikatlara göre çok daha yüksek miktarda bulunan bu moleküller, donup çarpışmaya ve daha büyük yapıları; buz kayaları oluşturmaya başlarlar.

Yeterince büyüyüp gezegenimsiler halini aldıklarında hızlı bir şekilde birkaç milyon yıldır var olan gaz diskinin en büyük parçasını oluşturan hidrojen ve helyum ile beslenmeye başlarlar. 3 milyon yıl içinde Dünya’nın kütlesinin 4 katı kadar kütle kazanabilirler ve bu gezegenimsiler 10 milyon yıl içinde gaz devlerini oluştururlar.

Bu sebeple güneş sistemimizdeki dış gezegenler, iç gezegenlere oranla çok daha hızlı bir şekilde oluşmuştur. Jüpiter‘in buz hattının hemen ötesinde olması bir rastantı değildir. Buz hattına geçince yoğunlaşmaya başlayan materyaller bir bariyer görevi görerek ortalama 5 AU uzaklıkta birikmeye neden olmuş ve gezegenimsinin oluşum sürecini hızlandırmıştır.

Satürn ise Jüpiter‘den birkaç milyon yıl sonra oluşumunu tamamlamıştır, Jüpiter’den daha düşük kütleli olmasının nedeni etraftaki hidrojen ve helyum gazlarının büyük bir kısmının daha önce Jüpiter tarafından ele geçirilmesinden kaynaklanmaktadır.

olusumdiski54454545

Uranüs ve Neptün‘ün ise günümüzde bulundukları bölgede oluşma ihtimali düşük görülmekte. Materyal dağılımına bakıldığı zaman bu kadar fazla kütleye sahip olmaları oldukça zor görünmesinin yanında, oluşmaları için geçen süre de birkaç yüz milyon yıla yayılıyor.

Bu nedenle Uranüs ve Neptün’ün Güneş’e daha yakın bir konumda, Jüpiter ve Satürn civarlarında gezegen çekirdeklerini oluşturduklarını ve daha sonra yörüngelerinin değiştiğine dair geliştirilmekte olan yörünge göçü modellerinden Nice 2 Modeli günümüzde çalışılmakta. Bu teoriye göre, buz devleri ilk evrelerinde rezonansa (Satürn ve Jüpiter’in kütle çekimsel itimine) kapılmış durumdalar ve oluşumlarından milyonlarca yıl kadar sonra günümüzdeki yörüngelerine yerleşiyorlar.

Dış gezegenlerin yaşadıkları rezonanslar ve yörünge göçleri, Güneş sisteminin daha dış bölgelerindeki yapıların oluşumunda da pay sahibiler.

Neptün’ün ötesindeki Kuiper kuşağı, saçılma diski ve Oort Bulutu buzul yapıya sahip olan kuyruklu yıldızların kaynağını oluşturmaktalar. Güneş’ten oldukça uzakta olan bu bölgelerde yeterli kütle olmadığı için madde akresyona (kümelenmeye) uğrayamaz ve gezegenler oluşturamaz.

olusumdiski454784212

Çizimde yeşil yörünge Jupiter’i, turuncu yörünge Satürn’ü, turkuaz yörünge Uranüs’ü ve koyu mavi yörünge Neptün’ü temsil etmekte.

 

Kuiper kuşağı günümüzde 30-55AU uzaklıkları arasında olsa da Güneş sisteminin ilk zamanlarında daha yakın konumdaydı ve yoğunluğu daha fazlaydı. Dış kısımları 30AU’ya kadar uzanırken içeride günümüzde Neptün ve Uranüs’ün bulunduğu yörüngeleri kapsamaktaydı.

Modele göre Jüpiter ve Satürn’ün, yörüngelerini temizlerken ilk 500 milyon yıl içinde 2:1 oranında rezonansa girmeleri (yani Satürn Güneş çevresinde 2 tam tur atarken Jüpiter’in 1 tam tur atması), çevrelerinde kütle çekimsel bir itki etkisi oluşturuyor ve bu nedenle önceden Güneş’e daha yakın olan Neptün, Uranüs’ün ötesine doğru sürükleniyor. Bu sırada eski Kuiper Kuşağı kalıntılarını da süpürüyor.

Buz devlerinin yörüngelerinin ötelenmesiyle birlikte daha dışarıdaki ufak buz kayaları da onların çekim etkisiyle birlikte iç bölgelere doğru yöneliyorlar. Jüpiter’in etkisiyle çok daha eliptik ve parabolik yörüngelere girmeye başlayan bu cisimlerin bir kısmı sistemin dışına doğru yol almaya başlıyor ve Oort Bulutu’nun da bu şekilde olduştuğu tahmin ediliyor.

oort-cloud457821

Buz hattından daha yakınlarda ise diskteki katı materyalleri bünyesine katan gezegenimsiler, biraz daha karmaşık bir oluşum süreci geçirirler. Güneş sisteminin iç kesimindeki silikat ve metal ağırlıklı cisimler çarpışmalar ve birleşmeler sonucu 1km civarı boyutlara ulaştıklarında, yakın çevrelerini kütleçekimsel olarak etkileyebilen planetesimal’ler dediğimiz ufak parçaları; gezegenimsi parçalarını oluştururlar.

Bir çok planetesimal çarpışmalar sonucu dağılır fakat aralarından bazıları çekimlerine kapılan ve türbülanslar sonucu bünyesine dahil ettiği kaya parçalarıyla sıkışmaya ve büyümeye devam eder. Böylelikle boyutları birkaç yüz km’yi bulan gezegenimsileri oluşur.

Çarpışmaya ve birleşmeye süreçleriyle Güneş Sistemi’nin erken dönemlerinde 50-100 civarı Ay/Mars büyüklüğünde gezegenimsi oluştuğu tahmin edilmektedir. 100 milyon yıl süresince bu gezegenimsiler kütleçekimsel olarak birbirlerini etkiler, çarpışmaya ve büyümeye devam ederler ve sonucunda 4 adet iç gezegeni (Merkür, Venüs, Dünya, Mars) oluştururlar.

theia-smashes-earth

Bu dönemin sonlarına doğru ortalama büyüklüğü Mars kadar olan gezegenimsilerden birinin Dünya’ya çarpması sonucu ise uydumuz Ay oluşmuştur.

İlk 10 milyon yılda dış gezegenler, 100 milyon yılda ise iç gezegenler oluşmakta. Fakat hem iç gezegenlerin oluşum sürecinden arta kalan planetesimaller, hem de dış gezegenlerin yörünge değişimleri nedeniyle Kuiper Kuşağı ve saçılım diskine etki etmeleri nedeniyle; Güneş Sistemi’nde 4.1 ila 3.8 milyon yıl öncesine uzanan, iç gezegenlere yönelik yüksek sayıda meteorit çarpışmasının yaşandığı düşünülen Ağır Bombardıman Dönemi adı verilen bir zaman aralığı vardır.

Ay’daki en büyük kraterler incelendiğinde tarihlenmeleri bu zaman aralığına denk gelir. Dünya’daki suyun da bir kısmı bu dönemde çarpan buz meteoritlerinden gelmektedir.

ay45478211255

Geç Ağır Bombardıman dönemi sonlarında artakalan planetesimal’lerinin bazıları gezegenlerin yörüngeleri tarafından yakalanıp uyduları meydana getirir. Mars’ın uyduları ve Jüpiter gibi devlerin yüksek deklinasyona sahip uyduları bu şekilde yakalanmış cisimlerdir.

Asteroit kuşağı da iç gezegenlerin oluşum döneminde gezegenimsilerin olduğu bir bölgedir. Fakat dev gezegenlerin yörünge değişiklikleri döneminden kalma parçalar pek yoktur. Daha çok Ağır Bombardıman Dönemi sonrası arta kalan gezegenimsiler ve asteroidlerden oluşur. Jüpiter’in çekim gücü nedeniyle yörünge hızları, enerjileri yükseldiği için çarpışma şiddetleri birleşmelerini sağlamaktan çok parçalanmalarını sağlayacak düzeyde olmaktadır.

Hazırlayan: Taylan Kasar

Bu yazımız, sitemizde ilk olarak 1 Nisan 2015 tarihinde yayınlanmış, gözden geçirip hatalardan arındırılarak tekrar yayına sunulmuştur. 

Okumaya devam et

Çok Okunanlar