Connect with us

Fizik / Astrofizik

Teori, Deneyler, Higgs ve Nobel

Bu yazıyı yaklaşık 23 dakikada okuyabilirsiniz.

Gazetelerde, iri puntolarla atılan başlıkları bilirsiniz. O günün sabahında, gerek bir yandan iş adamlarını, iş kadınlarını ve siyasetçileri, diğer yandan spor kulübü başkanlarını, borsa simsarlarını ve yatırımcıları bir koşturmaca içine sokacak olan konuların; gerekse insanlar arasındaki etkileşimlerin, medyaya yansıyan fragmanıdır bütün bunlar.

Bazen bu gazetelerde -ilginçtir- bilimsel haberlere rastlarız. Bilimsel ifadesine bir açılım yapmak gerekirse, “İsviçreli/Amerikalı/İngiliz bilim adamlarının yaptığı araştırmaya göre…”  diye başlayarak, ”…bir erkek, günde 16 kez…/…bir kadın, günde 8 kez…” diye devam eden haberler, bilimsel haber niteliği taşımazlar. Bu tür haberler, gazetelerin, boş alan doldurma endişesinin birer sonucu olan istatistiklerdir.

Bu haberler içinde yıldızı parlayan, yer yer değerli yazılara konu olan bir gelişme söz konusu: Higgs bozonu, teorik olarak tahmin edilişinden yaklaşık yarım asır sonra, CERN’de yapılan deneylerde keşfedilmişti. 2013 yılında ise, bu başarılarından dolayı, teoriyi yazan bilim insanları, Nobel Fizik Ödülü‘ne layık görülüp ödüllendirildiler. Peki, ödül nasıl bir buluşa gitti?

Peter Higss, geç de olsa gelen Nobel ödülünü gururla alırken, yüzü de gülüyor. (Fotoğraf: Routers)

 

CERN, yani Avrupa Nükleer Araştırma Merkezi, İsviçre ve Fransa sınırında yer alan, dünyanın en büyük parçacık fiziği laboratuvarıdır. Parçacık fiziği laboratuvarı ne demektir? Aslen bu tip bir laboratuvar, bir taşın en küçük yapısını merak eden ilkel insanın düşündüğü çözümlerin, günümüzdeki uzantısı demektir. 1954 yılında, 12 ülkenin katılımıyla kurulmuş olan CERN laboratuvarları, günümüzde 20 asil üyesine ilaveten Türkiye’nin de aralarında bulunduğu 8 gözlemci üyeye sahip. Peki, CERN deneylerini nasıl anlamamız ve değerlendirmemiz gerekiyor? Orada neler oldu ve niçin söz konusu buluş, bilim dünyası için önemli bir konum kazandı?

 Yüzyılın Deneyi

Eski Yunan doğa filozoflarının sonuncusu olan Demokritos, her şeyin atomlardan oluştuğunu söylerken kendinden oldukça emindi. “Bir kanıt sunmayı, Pers kralı olmaya tercih ederim!” derken de oldukça emindi kendinden. İşte insanın, en küçüğe ilgisinin simge isimlerinden biri, Demokritos idi.  Üzerinde oturduğunuz sandalyenin veya koltuğun, görebileceğiniz en küçük parçası sizi öksürtebilme, hatta hapşırtabilme olasılığına sahipken, göremeyeceğiniz kadar küçük parçaları ise, size, dünyanın en büyük makinesini inşa ettirebilir. Nitekim bilim insanları, maddenin atomdan da küçük yapıtaşlarını ve bu yapıtaşların en önemli özelliklerinin başında gelen kütleyi araştırmak üzere, dünyanın en karmaşık makinesini oluşturdular ve bu makineden belli bir başarı elde ettiler.

Fransa-İsviçre sınırında, yerin 100 metre altından geçen 27 kilometre uzunluğundaki tünele inşa edilen LHC (Large Hadron Collider: Büyük Hadron Çarpıştırıcısı), Aralık 2009 tarihinde proton çarpıştırmaya başlamıştı. Tıpkı ilkel bir topluluğa mensup bir bireyin, yukarıda sözünü ettiğimiz merak sebebiyle, bir taşı önce ikiye, sonra dörde ve giderek daha fazla parçalara ayırırken taşları birbirine vurmasında olduğu gibi. Hızlandırıcının üzerindeki, her biri birkaç katlı apartman büyüklüğündeki 4 detektör de yıllar süren hazırlıklardan sonra veri toplamaya başladılar.

Şekil 1 – CERN, başlıca deneyleri ve Higgs için en önemlisi, LHC. (Fotoğraf: CERN / Particle Physics for Scottish Schools.)

 

CERN Laboratuvarı’nda yer alan bu deneyler; CMS, ATLAS, LHC-B ve ALICE oarak isimlendiriliyorlar ve hepsinin kendine has açılımları bulunuyor. Atom çekirdeğinin pozitif yüklü parçacıkları olan protonların 14 TeV[1] enerjisinde çarpıştırıldığı bu deneyler, araştırmacılara Evren’in ilk zamanlarını anlama olanağı verebilecek olması bakımından önemliydi.

Yapılan deneylerde, LHC Laboratuvarı’nda, her biri 7 TeV enerjiye sahip olan ve 27 kilometrelik dairesel tünel içinde ışık hızına çok yakın hızlarda yol alan proton demetleri, çarpışarak 14 TeV’luk merkezi enerji meydana getirdi. Böylelikle atom altı dünyanın, şimdiye kadar yabancısı olduğumuz özelliklerini keşfetme şansımız oldu. Bu bölgedeki enerji yoğunluğu, evrenin başlangıcındaki Big Bang (Büyük Patlama) koşullarına yakın olduğundan dolayı, basında LHC deneyleri Big Bang deneyleri adıyla da adlandırılmıştı. Bununla beraber, bu deneylerde üretilen enerji, bir kibritin yanması sırasında üretilen enerjiden çok daha küçüktür.

Bu deneylerin temel hedefi, parçacık fiziğinde varılan son nokta olan, Standart Model adını verdiğimiz modelin yanıtlayamadığı sorulara yanıt bulmaktı. Standart Model, bize maddenin yapı taşlarının nasıl davrandığını ve birbirleriyle nasıl etkileştiklerini açıklamakta, ancak bunların nedenleri hakkında bilgi vermemekteydi ”Kütle neden var?” sorusuysa buna dair sorulardan en önemlisiydi. Higgs bozonu, işte tam bu noktada önerilmişti.

Büyük İngiliz teorik fizikçisi, Peter Higgs’ten 1 yıl önce doğru cevaba yaklaşıp, bu cevabın oralarda bir yerde olduğunun sinyallerini alan Philip Anderson’un kurduğu model, 1 yıl sonra Higgs’in işine yarayacaktı ve o yıl, makalesinde bunu, “Anderson’un plazmon modelinin relativistik bir versiyonu” biçiminde dile getirecekti.

Higgs’ten 1 ay önce ise, 49 yıl sonra Nobel Fizik Ödülü’nü Peter Higgs ile paylaşacağından habersiz, François Englert aynı modeli inceleyecek ve Higgs ile aynı sonuca varmasına rağmen, söz konusu bozonu tahmin edemeyecekti. Bununla beraber, Higgs’ten 1 ay sonra, Gerry Guralnik, Richard Hagen ve Tom Kibble gibi bilim insanları, Higgs’in yaklaşımına büyük katkıları olan, Higgs bozonunun kuantum özelliklerinden bahseden, hatta bu konuda Higgs’in çalışmalarından çok daha kapsamlı çalışmaları olan bilim insanları olarak, kronolojideki yerlerini alacaklardı.

Medyatikleşme süreci, onlarca mektuplaşma ağının, grup çalışmasının ve fikir alışverişinin gerçekleştiği çalışmalardan bir insanı çekip aldığı zaman, geride kalanları hatırlamak ne yazık ki pek kolay olmayabiliyor. Bu açıdan, bu hatırlatmaları yapmak yerinde oldu diye düşünüyoruz.

Standart Model bize, karşılaştığımız, etkilediğimiz, etkilendiğimiz her türlü maddenin, leptonlar ve kuarklar diye adlandırdığımız temel parçacıklardan oluştuğunu söyler. Örneğin atomun çekirdeğindeki proton ve nötronlar, 3’er kuarktan oluşurlar. Esasında bize çizilen küresel parçacık görselleri, bir anlamda yanıltıcıdır; zira bir proton, az önce de belirttiğimiz gibi, 3 kuarkın belli etkileşimlerle bir arada bulunmasından başka bir şey değildir. Bu belli etkileşimlerde de, aracı kuvvetler dediğimiz bozonlar rol oynar.

Yani madde, 6 kuark, 6 lepton ve bunların arasındaki etkileşimleri sağlayan aracı parçacıklardan ibarettir. Maddeyi oluşturan kuarkların dışında kalan diğer kuarklar, evrenin farklı yerlerinde hızla daha düşük kütleli kuarklara dönüşürler.

Ne çok etkileşim sözcüğü kullandık, değil mi? Açık yüreklilikle şunu itiraf etmemiz gerekiyor: etkileşim olgusunu anlamak, bütün bir fizik bilimini anlamakla neredeyse aynı değerde. İşte bu yüzden, en az, maddeyi oluşturan lepton ve kuarkları anlamak kadar, bozonları anlamak önemlidir.

Bir efsane haline gelen Higgs bozonu da bu parçacıklardan biriydi, dolayısıyla Higgs parçacığının var olup olmadığı sorusunun yanıtlanması, Standart Model açısından son derece önemliydi. Bu temel amacın yanında, diğer amaçlar için de, LHC deneyi dışındaki diğer bir deney sistemi, CMS (Compact Muon Selenoid – Sıkıştırılmış Müon Selenoidi) kuruldu.  LHC ve CMS, öncelikle Higgs parçacığını aramayı ve böyle bir parçacık varsa bunun kütlesini ve diğer özelliklerini ölçmeyi amaçlamaktaydı.

Öte yandan, LHC deneylerinin diğer amaçlarından biri de, Standart Modelin de ötesinde bir model olan Süpersimetri modelini sınamaktır. Süpersimetri,  Standart Modelin karşılaştığı sorunları çözmek için, 1970’lerde ortaya atılan bir teoridir; yani bir anlamda Standart Modelin yaması olarak görülebilir. Söz konusu parçacıklara bir de karşıt-parçacıklar öngören süpersimetriyle beraber, karşıt-parçacıklardan oluşan karşıt-madde ya da anti-madde fikri de ortaya çıkmıştır.

Sorunların bizim ilgileneceğimiz yönü ise, parçacıkların en temel özelliklerinden biri olan kütlenin, kendisini gösterişi olacak. Kütleyi miktar kavramından uzaklaştırıp parçacıklarda nasıl ortaya çıktığını kavramamız gerekecek. Bu bağlamda şunu belirtmemiz gerekiyor: Higgs bozonu, maddenin değil, parçacıkların (dolayısıyla madde parçacıklarına) kütlesinin kaynağıdır.

Şekil 2 – LHC tünelinden bir görüntü. Bu dev, mavi kablolar ise çok güçlü mıknatıslarla ve süper iletkenlerle sarılı parçacık taşıyıcıları. Parçacıklar, bunların içerisinde hızlandırılıyor ve çarpıştırılıyor. “Neden yerin altında?” diye sorarsanız, her saniye Güneş’ten vücudumuza nüfuz eden parçacıkları gösterebiliriz. Uzaydan dünyaya bu denli enerjik parçacıklar yağarken, böyle bir düzeneği yerin üzerinde kurmak pek de mantıklı sayılmazdı.

Deneylerde Büyük Patlama mı Tekrarlandı?

CERN’de gerçekleştirilen deneyler, Büyük Patlama’nın ne bir simülasyonu, ne de onu tekrarlıyor. Var olan modellerimizin uyuştuğu fikre göre, evrenimiz, 13,8 milyar yıl önce doğdu ve bugün için, hızlanarak genişliyor. Burada açabileceğimiz paranteze ise LHC deneylerinde protonların çarpıştırılarak evrenin başlangıcındaki enerji yoğunluğuna ulaşılmaya çalışıldığını yazmamız gerekir.

Protonların çarpışmasında ortaya çıkan mutlak enerji, hiç de katastrofik ölçeklerde bir enerji değil. Ancak protonların boyutları çok küçük olduğu için, enerji yoğunluğu çok fazla. Bu durumu şu şekilde örneklendirebiliriz: deniz suyunun ısısı, 1 litre kaynamış süte oranla kat kat daha fazladır. Çünkü ısı bir enerji ölçüsüdür ve deniz suyunun muazzam miktardaki kütlesinin içerdiği enerji, 1 litre kaynamış suyun enerjisinden milyarlarca kez daha büyüktür.

Böyle olduğu halde, yeteri kadar derin düşündükten sonra başımızdan aşağı 1 litre kaynamış su döktüğümüzde kavruluruz, ancak denize girdiğimizde hiçbir şey hissetmeyiz. Hatta deniz suyunun sıcaklığı düşükse üşürüz. Bunun nedeni, denizin ısısının dağılmış durumda olmasıdır. Oysa bir litre kaynamış suyun ısısı (yani enerjisi), küçük bir alanda yoğunlaşmıştır. Öyleyse önemli olan enerji miktarı değil, enerjinin yoğunlaşma derecesidir.

Kaçınız denize girdiğinde üşüdüğü için, yazın o sıcağı altında kıyıda oturup kitap okumayı tercih ediyor? (Görsel telif: Videoblocks.com)

 

Einstein’ın ünlü formülünü hatırlarsak, enerji, kütleyle özdeştir (E=mc2). Öyleyse enerji, yeteri derecede yoğunlaştığında maddeye dönüşür. Bunu, şöyle de ortaya koyabiliriz: bir maddenin enerjisini yeterli oranda arttırdığımızda, o maddenin kütlesi, enerjiye dönüşür. Yüksek enerji yoğunluklarında yüzlerce farklı parçacık ortaya çıkar. İçinde yaşadığımız Evren’de, madde adını verdiğimiz, her şeyi (vücudumuz, gezegenimiz, Güneş, yıldızlar vb.) oluşturan bu üç parçacık da (esas olarak proton, nötron ve elektron), yaklaşık 13,8 milyar yıl önce, Evren’in başlangıcında ortaya çıkmışlardır. Şimdilik bu parçacıkları meydana getiren o muazzam enerjinin kaynağına dair ise sadece görüşler mevcut.

Evrenin kendisinin Büyük Patlama ile oluştuğunu söyledik. Diğer bir deyişle; uzay, zaman, madde ve enerji bu sırada oluştu. Şimdi önemli bir parantez daha açmamız gerekiyor: Büyük Patlama kuramı, Büyük Patlama anını değil, daha sonrasında neler olduğunu açıklıyor. Büyük Patlama anıkavramı, bizlerin tahayyül edemeyeceği kadar küçük bir zaman dilimini ifade etmektedir. Bir ”an” bile değil aslında; 0,00000000000000000000000000000000000000000001 saniye! Bildiğimiz varlığın ilk aşaması, işte bu zaman dilimine sığdı.

Peki, ne oldu?

Teorisyenler, Kuantum Teorisi bağlamında bu soruya gayet zarif yaklaşımlar getirerek, geçici enerji kabarcıkları, parçacık-karşıt parçacık çiftleri gibi kavramlar türettiler. Bu parçacıkların ve enerji kabarcıklarının enerjileri, ne kadar düşük olursa; o kadar uzun süre yaşıyorlar (Düşük enerjinin yüksek entropiyi getirdiğini hatırlayalım; odanızı toplamanız için odanızda bir miktar enerji harcamanız gerekir). 20. yüzyılın ikinci yarısına girildikten hemen sonra, ABD’li fizikçi Edward Paul Tryon adlı bir bilim insanı, bu konuda şu hipotezi sunmuştu:

“Evren, boşluktaki enerji dalgalanmasından ortaya çıkmıştır.”  

Bunun açıklaması, uzayın aslında sanıldığı gibi ”boş” olmadığıdır. Uzay, görünenin ötesinde, yani atom altı düzeyde müthiş aktiviteler içerir. Peki, nedir bu aktiviteler? Örneğin; elektron parçacığı ve bu parçacığın karşıt-parçacığı, yani pozitif elektron, diğer bir deyişle pozitron birlikte aynı anda ortaya çıkıp kaybolabilirler. Elektron-pozitron çiftinin ömrü, etkileşirken 10-21 saniye olup, aralarındaki mesafe 10-10 santimetredir. Ömür kavramı burada, parçacıkların kaybolmadan veya başka parçacıklara bozunmadan gözleme veya araştırmaya dâhil olma süreleridir. Bu arada kaybolmaktan kasıt, yok olmak değildir; enerji formuna dönüşmektir. Bir parçacık, karşıt-parçacığıyla etkileştiği zaman, enerjiye dönüşür ve ”enerji kabarcıkları”nı oluşturur. Bunlar da, Edward Tryon’un hipotezinde kullanılan enerji dalgalanmalarına sebep olurlar. İşte bu da, Büyük Patlama için gereken enerji için sunulan görüşlerden biridir.

Higgs Bozonu Evrene Nasıl Kütle Verir?

Aslında ortada, konuşulması gereken bir parçacıktan ziyade, konuşulması gereken bir alan bulunuyor. Söz konusu parçacık da zaten bu alanın temel elemanıdır. Deniz kıyısında yürümeye çalışırken harcadığınız enerjiyle karada yürümek için harcadığınız enerji eşit midir? Hangi durumda daha çok yorulursunuz? Evet, denizin içinde yürümeye çalışmak daha zordur. Çünkü etkileşmenizin şart olduğu ve gaz molekülleri kadar etrafa saçılmamış, daha bir arada moleküller söz konusudur denizde. Siz ise katısınızdır, baştan ayağa.

Higgs bozonu dediğimiz parçacığın ev sahibi olan, onu barındıran alan, işte bu deniz gibidir; bu alanda bulunan tüm varlıklara kütle verir. Denizde yürümemiz zorlaştığında, ağır hissederiz; üzerimizde fazladan kütle bulunuyormuş hissi söz konusu olur. İşte bu kütle verme durumunu, böyle bir modelle açıklayabiliriz. Hatta daha da ileri gidip, Higgs alanını, sağanak yağmura benzetebiliriz; ancak bu yağmur, romantik olmaktan biraz uzak. Bize kaçacak hiçbir yer bırakmıyor ve sürekli yağıyor.

Bu yağmurun altında kendinizi salarak bir süngeri düşünecek olursanız, o hafif, yumuşak ve bazen havuçlu keki andıran (acıkmak böyle bir şey olsa gerek) cismin gitmiş, yerine ıslak, ağır bir cismin gelmiş olduğunu gözünüzde canlandırabilirsiniz. Yağmura benzettiğimiz Higgs alanı, parçacıklara işte buna benzer bir mekanizmayla kütle vermektedir. Süngerler, boyutlarına ve kapasitelerine göre, değişen miktarlarda su emebilirler. Parçacıklar da birbirinden farklı kütlelerin oluşturduğu geniş bir yelpazeye yayılmışlardır.

En büyük kütlelere sahip parçacıklar, yukarıdaki analojiye geri dönecek olursak, Higgs alanıyla en güçlü etkileşen parçacıklar olacaktır; yani yağmurdan en çok etkilenen canlılar, yürümekte en çok zorlanan canlılar olacaktır. Bununla beraber, Higgs alanı ile hiç etkileşmeyen parçacıklar da söz konusudur ki, bizler, onlardan biri olan fotonlar sayesinde bir şeyleri görebiliriz. Diğer kütlesiz parçacık ise, atom çekirdeğindeki parçacıkları bir arada tutan gluondur. Bu iki parçacığı da, suyla herhangi bir etkileşime girmeyen ya da su geçirmez süngerler olarak düşünebiliriz. Tüm olan biten bunlardan mı ibaret? Tabii ki hayır. Başta diktatörce, konuşulması gerekene karar vermiştik; bu, Higgs alanıydı. Peki, ya Higgs bozonu? O neden var? Nasıl olur da analojide Higgs alanını temsil eden yağmur, aynı anda parçacık da olabilir?

İklimi değişen Dünya’da yağmur eksikliği, bir insan vücudundaki önemli bir vitaminin eksikliği gibidir; tedavi için farklı çözümler aranır, uzman beyinler bu konu için seferber olur. Geçen yıl gittiğim bir tatil beldesinde, Nijeryalı bir ailenin küçük bir çocuğuyla tanışmıştım. Kuraklıktan kaçan aile, aile kaynaklarını kaçmak için kullanmıştı. Zeki olduğu kadar, oldukça duygusaldı da Adisa[2].

Yine sıcak bir yaz gününde kendinden geçmiş olan bana güzel bir şaka yapmıştı balonun içerisine doldurduğu suyla. İmgeleminde, sıcak bir havada yağmura hasret kalan bir insanı, böyle serinletebileceğini kurgulamıştı belki de. Hiç de haksız değildi. Yalnız, o suni yağmuru yaratırken bile, Adisa’nın kullandığı suyun kaynağı yağmurdu. Dolayısıyla, analojiden hareketle, yine işin içine Higgs alanı girmek zorunda. İçi su dolu balon ise Higgs parçacığı olarak düşünülebilir. Higgs alanı, Higgs bozonunu da dâhil olmak üzere, tüm kütle sahibi parçacıklara, kütlelerini veren alandır.

Su olmadan (dolayısıyla yağmur olmadan) balonların da, süngerlerin de daha az ilginç olacağı gerçeği bir yana, Higgs alanı olmaksızın, hiçbir şeyin kütle sahibi olamayacağını düşünebiliriz. Hayır; Dünya üzerinde kalamayıp uzaya doğru uçmazdık, daha bu noktaya gelmeden, gezegenleri oluşturacak materyaller bir araya toplanamazdı. Şimdi Higgs bozonunun (Higgs alanının), evrendeki tüm kütle sahibi parçacıklara, onlarla etkileşerek kütle kazandırdığını biliyoruz. Yolu üzerindeki neredeyse her şeyden sızabilmeyi bir şekilde başaran ve bu sızış sırasında, içinden geçebildiği şeyleri ağırlaştıran su gibi, Higgs alanı da neredeyse tüm parçacık türlerine –bazılarına daha fazla olmak üzere- etki ederek kütle verir.

Geçtiğimiz yılın Temmuz ayında açıklanan buluş da, tam olarak bu parçacığın, Higgs bozonunun keşfiydi. Protondan yaklaşık 133 kat fazla kütleye sahip bu parçacığın keşfi, evrenimizin mevcut haline dair modellerimizle de birebir uyum sağlıyor.

Teori

Popüler bilim yayınlarında pek rastlayamayacağımız isimler hakkında daha önce, Higgs ile beraber anılması gereken bilim insanları söz konusu olduğunda yakınmıştık. Standart Modelin ve bu model kanalında gelişen başka kuramların bel kemiğini, ismine yine pek de sık rastlayamayacağımız iki matematikçi kurgulamıştır: Sophus Lie ve Hermann Weyl. Esasında Standart Model dâhilinde gelişen tüm olaylar, 1920 yılı dolaylarında, Hermann Weyl’in orijinal bir yaklaşımına dayanıyor. Tüm bu üzerinde konuştuğumuz parçacıkların ve kuvvetlerin, onların özelliklerine karşılık gelen ve aslında bizim uzayımıza bağlantı yapan iç uzaylar olan, fiber demetleri olarak adlandıracağımız yapılardan oluştuğu düşüncesi, bu yaklaşımın en açık tanımı.

Matematiksel tanıma göre, bir fiber demeti iki bölümden oluşuyor: taban manifoldu ve bu manifoldun üzerindeki fiberler. Manifold dediğimiz unsuru, üzerindeki herhangi bir noktaya yaklaştıkça, onu, sanki kusursuz derecede düzmüş gibi algılamaya başlayacağımız eğri bir yüzey veya uzay olarak düşünebiliriz. Dünya’nın yüzeyini, bir çeşit manifold olarak tahayyül edebiliriz; ona çok yakın durumdayız ve gerçekten de dümdüz görünüyor! Fiber demeti için de bir analoji gerekirse, kafa yüzeyimizi (taban manifoldu) ve saçlarımızı (fiber) gözümüzde canlandırabiliriz. Böylece fiberlerle taban manifoldları arasındaki bağlantıya, kabaca aşina hale geliriz.

Saçlarınızı hayal edin (hayır, çoğunuzun saçları böyle değil, farkındayız).

 

Ancak önemli bir nokta, fiberlerin, saçlarımız gibi düz olmak zorunda olmadıklarıdır, ancak olabilirler de. Fiberler, herhangi bir geometrik formda bulunabilir. Weyl’in düşüncesi, uzay-zamanımızın, bu matematiksel yapıdaki taban manifoldu olduğu ve parçacıklarla kuvvetlerin de bu taban manifoldunun üzerindeki fiberler olduğu şeklinde. Hatta bu kuramın kullanımında, ilginç bir biçimde, 4 temel kuvvetin her biri, bir Lie grubu ile tanımlanıyor (Sophus Lie’ı hatırlayalım).

4 temel kuvvetin olduğunu biliyoruz: elektromanyetik kuvvet (elektronları atom çekirdeği etrafında tutuyor), zayıf nükleer kuvvet (radyasyon), güçlü nükleer kuvvet(atom çekirdeğinin bileşenlerini bir arada tutuyor) ve kütleçekim. Günümüzde fizikçilerin nihai hayali, bu 4 temel kuvvetin tek bir kuramda birleştiğine tanık olmak. Elektrik ve manyetizma, James Clerk Maxwell tarafından yıllar önce elektromanyetizma olarak birleştirilmişti. Elektromanyetik kuvveti tanımlayan fiberlerimiz, en basit Lie grubu olan u(1) grubu olarak bildiğimiz çember grubu.

Aslında uzay-zaman manifoldunun her noktası, bu u(1) fiberleriyle dolu. Bu çemberler dalgalandıklarında, biz bu etkiyi, elektromanyetik dalga olarak gözlemliyoruz. Elektromanyetizmanın kuvvet taşıyıcı parçacığı, yani bozonu, zaten foton olarak biliniyor. Matematiksel olarak simetri üreteci kavramının fiziksel karşılığı, işte tam da bu foton dediğimiz parçacık olarak karşımıza çıkıyor. Yani u(1) grubunun tek bir simetri üreteci var ve bu matematiksel üreteç kavramının fiziksel karşılığını da foton olarak yorumluyoruz. Ayrıca elektrik yüklü parçacıklar(mesela elektron) da bu u(1) fiberlerinin etrafına dolanmış çember şeklindeki başka fiberler olarak tanımlanıyorlar.

Tüm kuvvetler, en basit fiber olan, elektromanyetik kuvvetin basit u(1) fiberleriyle tanımlanmıyor. Farklı kuvvetleri, farklı Lie grupları temsil ediyor. Kuvvetlerin yükleri ve onları ilgilendiren parçacıklar ise hep bu kuvvetlere karşılık gelen Lie gruplarına dolanan çember fiberler olarak betimleniyor. Örneğin zayıf kuvveti, üç boyutlu Lie grubu olan su(2) ile tanımlarız. İşin matematiği, bize bu Lie grubunun üç tane simetri üreteci olduğunu söyler. Bu modeli doğada (parçacık hızlandırıcılarda ve detektörlerde) test ettiğimizde ise bu üreteçlerin, zayıf kuvvetin taşıyıcı bozonları olan w+, w– ve z bozonlarının varlığını işaret ettiğini görürüz. Odamızdan bile çıkmadan, sadece matematik yaparak bu parçacıkların var olması gerektiğini işte böyle anlayabiliyoruz. Esasında yeni yeni gelişen bir beyni, fiziğe ya da matematiğe yönelten en zarif durumlardan birini analiz etmiş bulunuyoruz.

Maxwell’den sonra ikinci birleştirmenin ürünü, Abdus Salam, Sheldon Glashow ve Steven Weinberg adlı bilim insanları tarafından, elektromanyetik kuvvet ile zayıf kuvvetin birleştirilmesiyle karşımıza çıkanelektro-zayıf kuvvet oldu. Ne yaptıklarına gelince, elektromanyetik kuvvete karşılık gelen u(1) fiberiyle, zayıf kuvvete karşılık gelen su(2) fiberini birleştirdiler.

Bu birleştirme işlemi, söz konusu bilim insanlarınca, bazı karmaşık matematiksel işlemler yardımıyla gerçekleştirildi. İşte Higgs bozonunun ve z bozonunun var olmasının gerektiği de, tam olarak bu elektro-zayıf fiberi sayesinde anlaşılmıştı. Ancak salonda z bozonu bile bulunuyorken, biri eksikti: tahmin edebileceğiniz gibi, Higgs bozonu.

Şekil 3 – Fiberlerin, taban manifoldunun ve fiber demetinin basit bir betimi. (Görsel: Wolfram Alpha.)

 

Higgs bozonunun teorisi, tam olarak bu olay örgüsünün sonucudur ve esasında, bu olay örgüsü, herhangi bir takım oyununda yapılan eşsiz bir atağa benziyor. Aynı araç ve gereçleri kullanan bilim insanlarının geliştirdiği fikirler, sonunda, bu konuda net bir ifadeye sahip Peter Higgs ve arkadaşları tarafından, sayı ya da gol niteliğinde bir sonuca dönüştürüldü.

Bu nihai parantezi açtıktan sonra, bir diğer kuvvet olan güçlü kuvvete karşılık gelen fiber demetinin, yani su(3) Lie grubu ile tanımlanan grubun, kuark ve gluonların varlığını gösterdiğini söylemeliyiz. Gördüğünüz gibi, doğa, matematikle fark ettiğimiz tüm bu gerçekleri, yaptığımız deneyler sonunda bizden hiç esirgemiyor.

Standart Modelin bu bağlamda ne olduğuna gelecek olursak, aslında bu model, elektromanyetik kuvvet, zayıf kuvvet ve güçlü kuvvetin birleştirilmesi anlamına geliyor. Yani, u(1), su(2) ve su(3) fiberlerinin birleştirilip yorumlanmasından bahsediyoruz ve bu yorumlar işe yarıyorlar. İşe yaradıklarını da deneylerimizden anlıyoruz. Ancak sorun, Standart Model dediğimiz modelin, kütleçekimini açıklayamaması. Sebebi de gayet açık: kütleçekimine karşılık gelen fiberin, kuramın yorumu içerisinde bulunmaması.Bunlarla beraber, doğanın neden Lie gruplarını kullandığı vesoyut fiberlerin neden var olduğu bilinmiyor; bunlar da başka bir yazının konusu.

Sonuç: Ne Oldu?

Bilinen evrenin tamamı -en küçük bileşenler olan temel parçacıklardan galaksilerin en büyük kümelerine kadar- düşündüğümüzden daha fazla ortak nokta içeriyor. Çok büyük ölçek farkına rağmen, kozmosun en büyük ölçeklerini yöneten yasalar, en küçük parçacıkları ve etkileşimlerini yöneten yasalarla ortak noktalar içeriyor. Bizler, bu iki ölçek için tamamen farklı şekillerde çalışıyoruz: çok büyük ölçekler, sadece büyük teleskoplarla ve doğal kozmik laboratuvarlarla çalışılabilirken, küçük ölçekler, Dünya’da, gelmiş geçmiş en güçlü makinelerin, parçacık hızlandırıcılarının yapımını gerektiriyor. LHC (Büyük Hadron Çarpıştırıcısı) ise bunların en büyüğü olarak öne çıkıyor. LHC, çoğumuz için hâlâ heyecan verici olsa da, her şeyden önce, Standart Model’in kayıp parçası olan Higgs bozonunun bulunabilmesi için yapılmıştı.

Nobel Ödülü’ne layık görülen çalışmanın, Peter Higgs dışındaki yazarları. (Soldan sağa:  Kibble, Guralnik, Hagen, Englert, Brout.)

 

Söz konusu çarpıştırıcıdan gelen haberleri, zamanında takip edenlerimizin de hatırlayabileceği gibi, Higgs bozonunun kütlesi hakkında amansız bir spekülasyon söz konusuydu. Bunun bir sebebi vardı: tüm bu parçacıklar -kuantum alan teorisi bağlamında- gözlemlediğimiz her şey üzerinde çarpıcı bir etki sahibi. Diğer tüm parçacıkların kütlelerini tayin edebilen bir parçacık söz konusu.

Örneğin bizler, 3 kuarkın bir araya gelerek, atom çekirdeğindeki protonları ve nötronları oluşturduğunu düşünürüz. Ancak bu 3 kuarkın tamamının kütlesi, söz konusu parçacıkların kütlesinin yalnızca %2’sine karşılık geliyor; yani bu kuarklar, proton ve nötronun kütlesinin çok küçük bir kısmını oluşturuyor. Geriye kalan kütle ise, kuantum alan teorisi yasalarının öngördüğü diğer bazı parçacıklardan, daha doğru bir ifadeyle, etkileşimlerden gelir. Tüm bu parçacıklar, birbirlerine o kadar bağlıdır ki, üst kuark dediğimiz, tüm Standart Modelin en ağır parçacığı (protonun 180 katı kadar bir kütleye sahip) eğer şimdiki kütlesinin 2 katına sahip olsaydı, evrendeki tüm protonlar, şimdiki kütlelerinin %20’si kadar fazla kütleye sahip olacaktı! Yani Higgs, evrende ne varsa, kuantum alan teorisine göre, hepsiyle çok yüksek derecede bağlı durumda.

Standart Model, kütleçekimini içermiyor. Ancak gerçek evrende bu olgu bulunuyor ve evrenin, bizim varsaydığımız temel teori, kütleçekimi de dâhil olmak üzere, bilinen tüm kuvvetleri içeriyor. Kütleçekimi söz konusu olduğunda, düşük enerjili ve yüksek ölçekli bir kuvvet akla gelir, ancak bizler bu kuvvetin, kuantum mekaniğine uygulanabilirliğini test etmeye çalışıyoruz. Evrenin son parametresini (Higgs bozonunun kütlesi) sınırlamak için bunların yapılması gerekiyor. Eğer kütleyi belli bir değere indirgeyebilirsek, bu, artık evrende, Standart Model için yeni bir parçacık olmadığı sonucuna varmamızı sağlayabilir.

Ancak bizler, Higgs bozonunun kütlesini farklı bir değer olarak bulursak (düşük veya yüksek; fark etmez), bu, evrende yeni bir şeylerin bizleri beklediğini gösterir. Daha da ilginç olanıysa, Higgs bozonunun kütlesi, Büyük Hadron Çarpıştırıcısı çalıştırılmaya başlamadan 3 yıl önce, 2009’da hesaplanmıştı! Higgs bozonunun kütlesinin çok küçük bir belirsizlikle hesaplanması, süpersimetriye, ekstra boyutlara ve Güneş Sistemi’nde kurulması planlanan bir parçacık hızlandırıcısıyla bulunması beklenen herhangi bir yeni parçacığı öngören fantastik fikirlere karşı ezici bir kanıt olabilir. Bu kütle de ATLAS ve CMS detektörlerinden gelen verilerle beraber, sağlam bir olasılıkla, öngörülen kütlelerde saptanmıştı.

Evet, evrende hâlâ karanlık madde, simetri kırınımı, nötrinonun kütlesi gibi cevap bekleyen sorular var. Fakat en azından parçacık fiziği için yeni parçacıklar bağlamında, öğreneceğimiz başka hiçbir şey olmaması olasılığı söz konusu.

Emre Oral

[1] TeV: Tera Elektronvolt. Elektronvolt, bir elektron parçacığının, 1 voltluk gerilim altında hızlandırıldığında kazandığı enerji anlamına gelir. Dolayısıyla çok küçük bir enerji miktarıdır. Dolayısıyla önüne gelen tera, giga, mega gibi ön eklerle beraber anılır. 1 Tera elektron volt, 1 trilyon elektron volta, yani 1012 elektronvolta eşittir.

[2] Nijerya dilinde “Duru, açık”.

Fizik / Astrofizik

Negatif Enerji ve Negatif Kütleli Madde Nedir?

• İçerik Üreticisi:

Bu yazıyı yaklaşık 3 dakikada okuyabilirsiniz.

Negatif enerji ve negatif kütle, özellikle “warp sürüşü” veya “solucan deliği” gibi kavramların konuşulduğu ortamlarda sıklıkla dile getiriliyor.

Bu kavramların gerçekliği her ne kadar tartışmalı olsa ve bilim insanlarının büyük kısmı tarafından spekülasyon olarak görülse de, ne olup olmadıklarını açıklamak gerektiğini düşündük.

Negatif Kütleli Madde

Negatif kütleli madde denildiğinde çoğumuzun aklına Antimadde ya da Karanlık Madde geliyor. Ancak, bunlarla karıştırmayınız. Teorik fizikte, negatif kütle sahibi madde, 0 ağırlıktan daha düşük kütleye sahip, “hiçbir şeyden daha hafif” diye tabir edebileceğimiz ve kütle çekimi tarafından çekilmeyen tersine itilen spekülatif bir egzotik maddedir.

Bir ya da daha fazla enerji durumunu ihlal eder. Bir tartı üzerine koyarsanız tartıya ters basınç uygular ve -10 kg gibi bir sonuç görürsünüz. Eğer evrende negatif kütleli egzotik madde çeşitleri varsa, gezegenlerin, yıldızların hatta galaksilerin kütle çekimleri tarafından çok uzaklara itilmiş ve belki de hiçbir zaman ulaşamayacağımız galaksiler arası derin uzayda bulunuyor olabilirler.

Peki fizik kanunlarını ihlal ediyorsa nasıl gerçek olabilecekmiş gibi konuşabiliyoruz? Böyle bir şeyin bizim evrenimizde bulunmaması gerekmez mi? Katı haldeki negatif kütleli madde, ancak “mükemmel sıvı” diye tabir edilen bir halde negatif kütle sahibi maddede bulunabilir.

Kanada, Montreal Üniversitesi’ndeki kozmologlar Saoussen Mbarek ve Manu Paranjape mükemmel sıvı haldeki negatif kütle sahibi bir maddenin hiçbir enerji durumunu ihlal etmediğini açığa çıkardı. Gereken tek şey, bu maddeyi Big Bang esnasında üretmiş olabilecek bir mekanizma. Kısacası şu anda böyle bir maddenin gerçekliğini ne inkar edip imkansız diyebilecek ne de onaylayabilecek bir durumdayız.

Negatif enerji

Negatif enerji, adından da anlaşılacağı üzere eksi değerleri olan enerji seviyelerine denir. Karanlık Enerji ile karıştırmayınız. Tamamen kuramsal olan negatif kütleli madde, aksine negatif enerji çeşitli kuantum durumlarında stabil olmayan şekilde mümkün olabiliyor.

Bununla birlikte karakteristik olarak negatif enerjiye oldukça benzeyen ancak negatif enerji sayılmayan ve çok küçük ölçeklerde gerçekleşen Casimir etkisinden de bahsedelim. 1933’te Hendrik Casimir, Kuantum Teorisi’nin kanunlarını kullanarak garip bir öngörüde bulundu. Casimire göre; (alttaki resimde görülen) vakum içerisindeki iki adet paralel, yüksüz metal plaka birbirlerini itecekti.

Normalde yüksüz olan bu plakaların sabit durması gerekmekteydi ancak bu iki plaka arasındaki vakum boş değildi, gerçekliğe giriş, çıkış yapan sanal parçacıklar ile doluydu. Bu noktada sanal parçacıklarla ilgili yazımıza göz atmanız faydalı olacaktır. (Bkz. Belirsizlik ve Kuantum Dalgalanmaları)

Bu vakum, çok kısa ömürlü elektronların ve pozitronların ortaya çıkıp birbirlerini imha ederek yok olduğu kuantum aktiviteleri ile doludur. Normalde bu yoktan var olan ufak madde-antimadde olayları Enerjinin Korunumu Kanunu’nu ihlal ediyor gibi görünse de; belirsizlik ilkesi sebebiyle bu küçük patlamalar inanılmaz ölçüde kısa ömürlü olup, net enerjide değişikliğe sebep olmamaktadır. Böylece Casimir bu kısa ömürlü olayların plakalar arası vakumda bir basınç yaratacağını ve bu basıncın plakaları iteceğini keşfetti. Normalde bu plakalar birbirinden uzakken bu etki gerçekleşmezken, plakalar yaklaştırıldıkça aralarında bu enerji açığa çıkmaya başlar.

Bu enerji 1948’de laboratuvarda, Casimir’in öngördüğü gibi gözlemlendi. Bu enerjiyi ölçmek için inanılmaz hassas ve sanat eseri sayılabilecek ekipman gerektiğinden, 1996’da ilk hassas ölçüm yapıldığında bu etkiden kaynaklanan basıncın bir karıncanın ağırlığının 30 binde 1’i kadar olduğu bulundu. Tahmin ettiğiniz gibi uzay-zamanı bükmek için çok yeterli değil.

Negatif enerjiye başka bir örnek de, kara deliklerin buharlaşma sürecinde açığa çıkan ve Hawking radyasyonu mekanizması sırasında oluşan kısa ömürlü sanal parçacıklar verilebilir.

Hazırlayan: Berkan Alptekin

Okumaya devam et

Fizik / Astrofizik

Hologram Evren Kavramı Ne Anlama Geliyor?

• İçerik Üreticisi:

Bu yazıyı yaklaşık 6 dakikada okuyabilirsiniz.

Yaşadığımız evrenin aslında bir hologram olduğu söylemi son yıllarda fizik ile ilgili ortaya çıkan en büyük yanlış anlamalardan birine sebep olmakta. Bu yazıda konuda geçen kavramları ele alacağız, fizikçiler aslında ne demek istiyor onu açıklayacağız.

Hayır evrenimiz hologram değil. Bu sözcük evrenin olması gerektiği düşünülen bazı özelliklerini tanımlamak için kullan bir metafor. Bilimkurguda rastladığımız “bir simülasyonun içinde yaşama” eylemini sağlayan hologramla ilgisi yok. Bunu netleştirelim ve konunun bel kemiğini oluşturan Holografik İlke aslında ne demek ona bakalım.

Holografik İlke

Öncesinde başka bir konuya, entropiye bakmamız gerekiyor. Bir kara deliğin olay ufku sınır kabul edilir ve entropisi olay ufku yüzey alanının 4’e bölünmesiyle bulunur. Evrende, içinde madde barındıran, kara delik dışında bir bölge düşünün. Bu bölgenin kara deliğe benzer bir şekilde toplam entropisinin bir limiti var mıdır?

Biraz düşünecek olursak; eğer bu bölgenin içine madde eklemeye başlarsak bölgenin entropisini arttırırız. Fakat madde eklemeye devam ederken belli bir noktadan sonra o bölgede o kadar çok madde birikir ki, sonunda bu bir karadelik oluşturur.

Yani evrende bir bölgenin entropisini sonsuza kadar arttıramıyoruz. Limit var; çünkü entropi arttırmak için aynı hacime daha çok madde eklemek eninde sonunda kara delik oluşturuyor. Dolayısıyla evrende bir bölgede olabilecek en yüksek entropi nedir diye merak ediyorsak; o bölgenin yüzey alanının 4’e bölmemiz gerekiyor. (sanki kara deliğin entropisini ölçüyormuş gibi)

Entropiye aslında bir bilgi ölçeği de diyebiliriz. Evrendeki her madde, her parçacık, her dalga bilgi, yani enformasyon taşır. Bir yerde ne kadar çok madde varsa, o kadar çok bilgi vardır, dolayısıyla entropi o kadar yüksektir. Bu çıkarım bir fiziksel ilke, yani uymak zorunda kalınan bir kural. Holografik ilke adı verilen bu kural kısaca demekte ki; bir miktar hacmin içerisindeki bilgi miktarı, o hacme tanımlanan toplam bilgi miktarını geçemez.

Fizikte ilke/prensip adı altında geçen tanımlamalar, bir konuyla ilgili teorileri formülize etmek için kullanılır. Holografik ilke ise, Kuantum yerçekimi teorisini oluşturabilmek için kullanılması gereken bir ilkedir. Kuantum yerçekimi teorisi oluşturmak için işe koyulduysanız, bulduğunuz teori ya bu ilkeye uymak zorunda, ya da bu ilkeyi ihlal ediyorsa neden ihlal ettiğini çok iyi açıklayabilmek zorunda. Yoksa, teoriniz tutarsız olur.

Yapısı gereği deneysel olarak test edilebilecek tahminlere sahip olmayan bu gibi bilimsel ilkeler, belirli bilimsel teorileri oluşturmak için kullanılırlar yukarıda belirttiğimiz gibi. Dolayısıyla, prensibin tek başına varlığı, evrenin hologram olduğu veya evrenin bu prensibe gerçekten uyduğu anlamına gelmez.

Evrenin Holografik ilkeye uyup uymadığı ifadesi ise test edilmesi gereken bir önermedir. Fakat bunun yapılabilmesi için önce işe yarar, çalışan bir kuantum yerçekimi teorisi oluşturmak gerekiyor.

Dolayısıyla, eğer biri size evrenin hologram olduğundan bahsediyorsa, o kişinin aslında neyden bahsettiği hakkında bir fikri olmadığı söylenebilir. Medyada son zamanlarda çokça ortaya çıkmaya başlayan evrenin hologram olduğu kanıtlandı benzeri haberler de benzer bir şekilde yanıltıcı ifadelerle son zamanlarda yapılan çalışmaları anlatmaya çalışıyor.

The Matrix, hologram kavramının ötesinde, dijital sanal bir evren tasvir eder.

Bu haberlerin yapıldığı makaleler aslında biri AdS diğer CFT adında iki gerçek olmayan teorinin bağlantısını ifade eden AdS/CFT konjektürü adlı matematiksel tanımlamaya dayanmakta ve bu, yaşadığımız evren ile ile ilgili bir şey de söylememekte.

Konuyu genel hatlarıyla anlayabilmeniz için bu iki karışık matematiksel teorinin detaylarını bilmeniz gerekmiyor merak etmeyin. Sadece uzayı farklı şekilde tanımlayan iki farklı matematiksel modelin olduğunu ve bu ikisinin birbirleriyle ilişkisinin üzerine çalışıldığını söylüyorum. Aşağıda iki teoriye de kısaca değineceğim.

O zaman neden bu AdS/CFT’ye ihtiyaç duyuluyor?

Yukarıda anlattığımız holografik prensip sadece sözlerden oluşan bir şey ve sözler keskinlik konusunda iyi değillerdir, hesaplanamazlar. Fizikçiler düşünceleri matematiksel denklemler halinde yazmayı severler, böylece bahsedilen şeyin niteliği ve niceliği analiz edilebilir olur.

AdS/CFT konjektürü de bu şekilde holografik prensip’e dayanan matematiksel bir modeldir. Fakat bu matematiksel model gerçek değil yani bizim evrenimizi tanımlamıyor. Peki madem gerçek değil, o zaman neden üzerinde çalışıyor?

Fizikte “Oyuncak Teori” olarak da bilinen bir kavram bu. Gerçek olmadığı bilindiği halde bu gibi teorilerin üzerinde çalışılmasının iki nedeni var.

1 – Basit bir model olduğu için daha karmaşık ve gerçek olan modellerde yapılamayan hesaplamaları yapmaya olanak sağlamaları.

2 – Gerçekçi bir modelimizin olmadığı bir alanda, elimizdeki verilerle ne yapabildiğimize bakabilmek.

Peki o zaman AdS/CFT konjektürü bize ne anlatıyor? Teknik detayına girmediğimizde bunun sicim teorisinde tanımlanan D3-zarıyla uğraştığını söyleyebiliriz.

Bu zara iki farklı perspektiften bakılıyor. Bir perspektiften bakıldığında 5 boyutta (kuantum) yerçekimi teorisi gibi duruyor, buna AdS tarafı deniliyor. Diğer perspektiften yani CFT tarafından bakıldığında ise yerçekiminin dahil olmadığı 4 boyutlu teori gibi duruyor.

adc67216f99baacc75f599e955427160

Fakat zar aynı zar olduğu için, hangi perspektiften bakarsak bakalım aynı şekilde davranması gerekmekte. Yani aynı hesaplamaları 5 boyutlu teoride de 4 boyutlu teoride de yaptığımızda aynı sonuçları almalıyız.

Bir şeyin bu şekilde iki farklı tanımının olması, yani modelin ikili yapısı, hesaplamalar yaparken oldukça kullanışlı, faydalı oluyor. Hesaplanmak istenen şey eğer yerçekiminin dahil olduğu AdS tarafında hesaplanması çok zor ise, yerçekimsiz olan CFT teorisinde hesaplanarak bulunabiliyor.

AdS/CFT modeline konjektür yani varsayım sıfatını vermemin nedeni daha tam kanıtlanamamış olması. Fakat bu konjektürün doğru olabileceğine dair birçok veri var. Bunlar yukarıda anlattığımız gibi hesaplamaların iki farklı perpektiften de bakılarak yapılıp karşılaştırılmasıyla ve sonuçların tutmasıyla olmakta. Fakat sonuçların her zaman tutarlı olacağı henüz söylenememekte.

Bilim sitelerinde “fizikçiler evrenin hologram olduğuna dair kanıt buldular” diye haberlere rastladığınız zaman, o habere konu olan makalenin aslında demek istediği şey AdS/CFT konjektüründe tutarlı olan bir hesaplama daha bulunduğu. Fakat tekrar edelim, bu bizim evrenimizle ilgili bir şey söylememekte, sadece gerçek olmayan model hakkında daha yeni bir bilgi vermekte.

Modelin gerçek olmamasının nedenlerine gelecek olursak:

  • Model sırtını sicim teorisine dayamakta ve aslında sicim teorisi de “Oyuncak Teori” sınıfına girmekte. Sicim teorisi evrenimizi ile ilgili gerçek bir tanımlama yapmamakta. Sanal bir evren tanımı yapmakta ve bu evren bazı açılardan bizim evrenimiz ile benzerlikler taşıyor fakat bazı açılardan oldukça farklı.

  • Yerçekiminin de dahil olduğu perspektife AdS deniliyor çünkü bu evreni “Anti de Sitter” adında özel bir geometri ile tanımlıyor. Evrenimiz bu geometriye sahip değil. Hatta bunun tam tersi olan “de Sitter” ile tanımlanmış durumda. Dolayısıyla AdS bizim evrenimize bağlı bir tanım yapmıyor.

  • Yerçekiminin dahil olmadığı perspektif olan CFT ise evreni Conformal Simetri adında özel bir geometri ile tanımlıyor. Bu nedenle adı Conformal Field Theory/Conformal Alan Teorisi. Fakat evrenimiz hem conformal simetriye sahip değil hem de yerçekimi var. Dolayısıyla CFT de bizim evrenimize bağlı bir tanım yapmamakta.

Sonuç olarak; AdS/CFT konjektürü sanal bir evren modeli tanımlıyor ve bu tanımladığı evren bizim evrenimiz değil. Holografik ilkenin matematiksel bir karşılığı. Oldukça önemli olmasına ve teorik fizikte bir çok uygulama alanı olmasına rağmen bizim evrenimizle bir ilişkisi yok.

Yine de Holografik ilenin gerçek olmayan matematiksel bir modeli olan AdS/CFT çalışmaları, ileride bizim evrenimize de uygulanabilecek gerçek bir model için zemin hazırlamakta ve serimizin ilk yarısında belirttiğimiz gibi işleyen bir kuantum yerçekimi teorisi ortaya çıktıktan sonra holografik prensibin empirik olarak sınanmasının da önü açılacak.

Hazırlayan: Taylan Kasar

Konuyla ilgili diğer yazılarımız:
Evren bir simülasyon mu? – 1
Evren bir simulasyon mu? – 2

Okumaya devam et

Fizik / Astrofizik

Yıldızların Rengi ve Sıcaklığı Arasındaki İlişki

• İçerik Üreticisi:

Bu yazıyı yaklaşık 3 dakikada okuyabilirsiniz.

Yıldızların rengi ve sıcaklığı arasındaki ilişki bazen kafa karıştırıcı olabiliyor. Astronomi sitelerinde vakit geçirmeyi seven pek çoğumuz şu bilgi notuyla karşılaşmışızdır; ”Zannedilenin tersine mavi yıldızlar, kırmızılardan çok daha sıcaktır.” Peki ama neden?

Günlük yaşamımızdan da bildiğimiz üzere, ısındığı için ışık yayan cisimlerin yaydıkları ışığın rengi, cismin sıcaklığıyla ilgilidir (fluoresan ve led türü soğuk ışık kaynakları şu anki konumuz değil). Yıldızlar dahil olmak üzere, ısısı nedeniyle ışık yayan tüm cisimler aslında kara cisim ışıması yaparlar.

Örneğin kırmızımsı – turuncu renkte gördüğümüz elektrikli sobanın çubuklarının sıcaklığı 2.000 santigrat derece kadardır. Evlerimizde kullandığımız Edison tipi bir akkor ampulün içindeki flaman sarımsı ışık yayar. Bu flamanın sıcaklığıysa yaklaşık 3.000 derece civarındadır.

hand-holding-lit-lightbulb

Eğer bir cismi daha fazla ısıtabilirsek renginin giderek maviye döndüğünü görebiliriz. Bir odunu yaktığımızda, odunun bitişiğinde yanmakta olan ateş mavi renktedir. Yanan ateş, kaynağından uzaklaştıkça, alevi oluşturan partiküller soğuduğu için maviden kırmızıya doğru kayar. Bunu bir çakmak veya kibrit yaktığımızda da gözleyebiliriz.

Örneğin bir kibrit yanarken ateş, kaynağına en yakınken mavi renktedir. Fakat, kaynağından uzaklaşıp havadaki görece düşük sıcaklıkla karşılaştıkça yavaş yavaş sıcaklığını kaybeder, mavi renkten beyaza, beyazdan sarıya, sarı renkten de kırmızıya döner ve gözden kaybolur.

Tabi bu arada şunu belirtmek lazım; Dünya üzerinde gördüğümüz alevlerin rengini sadece sıcaklık belirlemez. Alevi oluşturan kimyasal madde de renge etki eder. Kibrit ve çakmak örneğinde mavi alevli kısım aslında 1.000 santigrat dereceden düşük sıcaklıkta olmasına rağmen mavidir, çünkü alevi oluşturan kimyasallar bu rengi yayarlar. Ancak, bunu göz ardı edersek, “öğretici örnekleme” açısından uygundur.

1010419_391319711014514_490058086_n

Türlerine göre yıldızlarının evrende bulunma oranları. Her 1 adet O-B sınıfı yıldıza karşı diğer yıldız türlerinden kaç tane olduğu. Şu makalemize de göz atabilirsiniz.

 

İşte yıldızlarda da durum buna çok benzerdir. Elbette yıldızlarda alev yoktur. Sıcaklık, yıldızın çekirdeğindeki nükleer reaksiyon sonucu alevsiz olarak oluşur. Daha başka bir deyişle, yıldızları ısıtan şey ateş değildir. Fakat bizler Dünya üzerinde sıcaklığın sadece “kimyasal bir reaksiyon olan” ateş ile oluştuğunu gözlemlediğimiz için, yıldızları da birer alev topu olarak düşünürüz. Bu, içine düştüğümüz bir yanılgıdır.

Sıcak yıldızların ışığı mavi, soğuk yıldızlarınkiyse kırmızıdır. Yıldızın rengini, çekirdek bölgesindeki nükleer reaksiyonun miktarı belirler. Büyük ve sıcak yıldızlarda bu reaksiyon çok fazla olduğu için yıldız da orantılı olarak o kadar fazla ısınır ve rengi de bununla bağlantılı olarak kırmızıdan maviye doğru (sırasıyla kırmızı, sarı, beyaz, mavi) değişir.

Burada kırmızı yıldızlara soğuk demekteyiz fakat soğuk değildirler, bu “göreli” bir tanımlamadır. Mavi renkli yıldızlar 30.000 santigrat dereceden fazla sıcak olabilirken, kırmızı renkli yıldızlar 2.500 – 3.000 derece kadar sıcaktırlar. Haliyle 30.000 derecelik bir sıcaklığa karşı 2.500 derece, 12 kat soğuktur.

Yıldızların renkleriyle sıcaklıklarının ilişkisini gerçek anlamda anlayabilmek ve yıldız asrofiziği açısından ele alabilmek için; şu üç yazımızı muhakkak okumalısınız:

  1. Tayf
  2. Tayf Türleri
  3. Kara Cisim Işıması

Hazırlayan: Kemal Cihat Toprakçı
Bu yazımız, sitemizde ilk olarak 8 Mart 2015 tarihinde yayınlanmış, güncellenerek tekrar yayına sunulmuştur.

Okumaya devam et

Fizik / Astrofizik

Güneş Sistemi’nin Oluşumu: Modern Laplace Teorisi

• İçerik Üreticisi:

Bu yazıyı yaklaşık 10 dakikada okuyabilirsiniz.

Modern Laplace Teorisi günümüzde Güneş Sistemi’nin oluşumunu en iyi anlatan ve en kabul görmüş teoridir. Ancak, Güneş Sistemi’nin oluşumunu açıklamaya çalışan teorileri geçmişten günümüze doğru anlatmaya çalıştığımız yazı dizimizi eğer okumadıysanız, öncelikle birinci ve ikinci bölümlerini okumanızı öneririz.

Laplace’ın ortaya attığı orjinal teorideki açısal momentum sorunu Roche’nin denemesinden başlayarak 100 yılı aşkın süre boyunca çözülmeye çalışılmış, bir çok farklı model denenmiştir. (Açısal momentumun ne olduğu ve nasıl bir sorun yarattığı yazı dizimizin önceki bölümlerinde anlatılmıştı.)

Bu uğraşlar sayesinde Güneş Sistemi’nin oluşum sürecindeki farklı olaylara zaman içinde açıklıklar getirilmiş, 1974’te astronom Andrew Prentice tarafından Modern Laplace Teorisi adı altında daha bütünlüklü bir teori oluşturulmuştur. Teori, kendisinden birkaç sene önce ortaya konulan Güneş Nebulası Teorisi’nin bir devamı gibi durmasının yanında gezegen oluşumlarını ele alışı Protoplanet Teorisi ile benzerlik taşır.

Güneş Sistemimizi oluşturan ana nebulanın çapının 20 parsek (1 parsek = 3.26 ışık yılı, yani 31 trilyon km) olduğu düşünülmektedir. Güneş sistemi bu nebulanın sadece 0.01-0.1 parsek çapındaki bir parçasının çökmeye, yoğunlaşmaya başlamasıyla meydana gelmiştir.

orion_nebula_complex_wide

Fotoğrafta görülen Orion bulutsusu 3.5 parsek (1 parsek = 3.26 ışık yılı) büyüklüğündedir ve 700 civarı yıldıza ev sahipliği yapmaktadır.

 

Güneş öncesi nebulası adını verdiğimiz bu parçada yoğunlaşmaya neden olan, daha doğrusu katalizör görevi gören şeyin süpernovalardan yayılan şok dalgaları olabileceği tahmin edilmiştir. Bu şok dalgaları sayesinde ortamdaki gaz ve toz kümelenmeye başlar ve kütle çekimi etkisiyle yıldız sistemleri meydana gelir. Süpernovalar kütlesi oldukça yüksek olan ve dolayısıyla kısa ömürlü olan yıldızların ömürlerinin sonuna gelince infilak etmeleri sonucu etrafa şok dalgasıyla birlikte içlerindeki materyali de saçarlar.

Demir elementinin kararsız izotoplarından olan 60Fe ve benzer şekilde aluminyum izotopu 26Al, sadece süpernova patlamalarıyla ortaya çıkan ürünlerdendir ve Dünya’ya düşmüş meteoritlerde bu izotoplar bulunmuştur. 60Fe daha eser miktarda bulunduğu için Güneş Sistemi’ni oluşturan etkiyi yaratacak patlamadan çok daha önceki çevrimlerden arta kaldığı düşünülmektedir fakat 26Al miktarı, etrafta 20 Güneş kütlesinden daha büyük bir yıldızın Güneş Sistemi oluşmadan önce patladığını ve sistemimizi oluşturacak gaz ve toza etki ettiğini doğrulamakta.

Supernova’dan gelen şok dalgasının etkisiyle kümelenmeye başlayan bulutsu kütle çekimsel olarak baskın hale geldiğinde çökmeye başlar. Merkezde yoğun bir çekirdek oluştuktan sonra kütle çekimsel alan büyüyüp etraftaki gazları da çekmeye başlar ve daha da büyür. Akresyon adı da verilen bu süreçle etraftaki gazlar sistemin içine dahil edilir ve sistem dışarıdan bağımsız bir hale gelir. Bu andan itibaren içsel süreçlerle evrilme devam eder.

Merkezdeki çekirdek, etrafından madde aldıkça daha az hacme sıkışan bulutsu açısal momentumunu korumak için çok daha hızlı bir şekilde dönmeye başlar. (bir patencinin kendi etrafında dönmeye başladığı sırada kollarını ve bacaklarını bir araya topladığında hızlanması da aynı nedenden dolayıdır.)

Sisteme yandan baktığımız zaman, nebulanın yukarısından ve aşağısından çekilen parçacıkların çarpışmaları ve dikey enerjilerini bu şekilde yok etmeleri nedeniyle sistem yüksekliğini kaybedip genişleyerek bir disk şeklini almaya başlar. Gezegenlerin Güneş ile neredeyse aynı düzlemde yer almalarının nedeni budur.

starbirthdisc477512

Bu ilustrasyonda görülen başlangıç diski ortalama 100 AU genişliktedir. Merkezinde proto yıldız olan bu diskte açısal momentum ve sıcaklık nedeniyle gazlar kenarlara doğru gittikçe genişleyen bir biçimde ilerlerken daha ağır maddeler kütle çekimi etkisiyle içeriye doğru sürüklenir. Modern Laplace Teorisi’ne göre nebula ortalama 100,000 yıl içinde disk şeklini almıştır.

 

Disk küçülmeye devam ederken 10 milyon yıl içinde gaz yapılı dış gezegenler oluşur. Kayaç gezegenlerin oluşması 10-100 milyon yıl içinde gerçekleşir. 50 Milyon yıl içinde ise merkezdeki T-Tauri benzeri proto yıldızın (ön yıldız) kütlesinin yarattığı basınç ve sıcaklık Hidrojen füzyonu başlatacak seviyeye ulaşır, Güneş doğar.

Maddenin nasıl dağıldığına bakacak olursak; bu disk oluşumu sırasında Güneş’e 4 AU (1 AU “astronomik birim” = 150 milyon km) kadar yakın konumlarda hafif gazlar sıcaklık ve basınç dolayısıyla kendilerine yer bulamazken yüksek sıcaklıklarda yoğunlaşma özelliğine sahip olan Kalsiyum ve Alüminyum açısından zengin oluşumlar Güneş’e yakın konumlarda toplanmaya başlarlar.

Kalsiyum-Alüminyum oluşumlarının biraz daha ötesinde ise milimetre ve daha ufak ölçeklerde Krondül adı verilen ve serbestçe dolaşan erimiş damlalar olan silikat küreleri oluşur. En yaygın meteorit tipi olan Krondrit’lerde yani kaya meteoritlerinde bulunurlar.

Yoğunlaşan bu gibi moleküllerin ve demir, nikel alüminyum gibi metal elementlerinin birleşmesiyle oluşan taş ve kaya parçacıkları Güneş Sistemi’nin iç kesimlerinde, çapı 10km’ye varan, Planetesimal‘ler adını verdiğimiz yapıları meydana getirmeye başlarlar ve disk halkalı bir yapıya dönüşme sürecine girer.

Allende_meteorite

Fotoğrafta Allende meteoritinden bir kesit görülmekte. Meteoritin üstündeki beyaz lekeler Güneş sisteminin ilk zamanlarında oluşmuş olan Kalsiyum-Alüminyum’lardır.

 

Gaz ve tozdan oluşan bu diskin iç kısımlarında su molekülleri sıcaklıktan dolayı kristalleşip donamaz. Dış kısımlara doğru gidildikçe, buz hattının ötesinde su molekülleri donmaya başlar. İç kısımlardaki metaller ve silikatlara göre çok daha yüksek miktarda bulunan bu moleküller, donup çarpışmaya ve daha büyük yapıları; buz kayaları oluşturmaya başlarlar.

Yeterince büyüyüp gezegenimsiler halini aldıklarında hızlı bir şekilde birkaç milyon yıldır var olan gaz diskinin en büyük parçasını oluşturan hidrojen ve helyum ile beslenmeye başlarlar. 3 milyon yıl içinde Dünya’nın kütlesinin 4 katı kadar kütle kazanabilirler ve bu gezegenimsiler 10 milyon yıl içinde gaz devlerini oluştururlar.

Bu sebeple güneş sistemimizdeki dış gezegenler, iç gezegenlere oranla çok daha hızlı bir şekilde oluşmuştur. Jüpiter‘in buz hattının hemen ötesinde olması bir rastantı değildir. Buz hattına geçince yoğunlaşmaya başlayan materyaller bir bariyer görevi görerek ortalama 5 AU uzaklıkta birikmeye neden olmuş ve gezegenimsinin oluşum sürecini hızlandırmıştır.

Satürn ise Jüpiter‘den birkaç milyon yıl sonra oluşumunu tamamlamıştır, Jüpiter’den daha düşük kütleli olmasının nedeni etraftaki hidrojen ve helyum gazlarının büyük bir kısmının daha önce Jüpiter tarafından ele geçirilmesinden kaynaklanmaktadır.

olusumdiski54454545

Uranüs ve Neptün‘ün ise günümüzde bulundukları bölgede oluşma ihtimali düşük görülmekte. Materyal dağılımına bakıldığı zaman bu kadar fazla kütleye sahip olmaları oldukça zor görünmesinin yanında, oluşmaları için geçen süre de birkaç yüz milyon yıla yayılıyor.

Bu nedenle Uranüs ve Neptün’ün Güneş’e daha yakın bir konumda, Jüpiter ve Satürn civarlarında gezegen çekirdeklerini oluşturduklarını ve daha sonra yörüngelerinin değiştiğine dair geliştirilmekte olan yörünge göçü modellerinden Nice 2 Modeli günümüzde çalışılmakta. Bu teoriye göre, buz devleri ilk evrelerinde rezonansa (Satürn ve Jüpiter’in kütle çekimsel itimine) kapılmış durumdalar ve oluşumlarından milyonlarca yıl kadar sonra günümüzdeki yörüngelerine yerleşiyorlar.

Dış gezegenlerin yaşadıkları rezonanslar ve yörünge göçleri, Güneş sisteminin daha dış bölgelerindeki yapıların oluşumunda da pay sahibiler.

Neptün’ün ötesindeki Kuiper kuşağı, saçılma diski ve Oort Bulutu buzul yapıya sahip olan kuyruklu yıldızların kaynağını oluşturmaktalar. Güneş’ten oldukça uzakta olan bu bölgelerde yeterli kütle olmadığı için madde akresyona (kümelenmeye) uğrayamaz ve gezegenler oluşturamaz.

olusumdiski454784212

Çizimde yeşil yörünge Jupiter’i, turuncu yörünge Satürn’ü, turkuaz yörünge Uranüs’ü ve koyu mavi yörünge Neptün’ü temsil etmekte.

 

Kuiper kuşağı günümüzde 30-55AU uzaklıkları arasında olsa da Güneş sisteminin ilk zamanlarında daha yakın konumdaydı ve yoğunluğu daha fazlaydı. Dış kısımları 30AU’ya kadar uzanırken içeride günümüzde Neptün ve Uranüs’ün bulunduğu yörüngeleri kapsamaktaydı.

Modele göre Jüpiter ve Satürn’ün, yörüngelerini temizlerken ilk 500 milyon yıl içinde 2:1 oranında rezonansa girmeleri (yani Satürn Güneş çevresinde 2 tam tur atarken Jüpiter’in 1 tam tur atması), çevrelerinde kütle çekimsel bir itki etkisi oluşturuyor ve bu nedenle önceden Güneş’e daha yakın olan Neptün, Uranüs’ün ötesine doğru sürükleniyor. Bu sırada eski Kuiper Kuşağı kalıntılarını da süpürüyor.

Buz devlerinin yörüngelerinin ötelenmesiyle birlikte daha dışarıdaki ufak buz kayaları da onların çekim etkisiyle birlikte iç bölgelere doğru yöneliyorlar. Jüpiter’in etkisiyle çok daha eliptik ve parabolik yörüngelere girmeye başlayan bu cisimlerin bir kısmı sistemin dışına doğru yol almaya başlıyor ve Oort Bulutu’nun da bu şekilde olduştuğu tahmin ediliyor.

oort-cloud457821

Buz hattından daha yakınlarda ise diskteki katı materyalleri bünyesine katan gezegenimsiler, biraz daha karmaşık bir oluşum süreci geçirirler. Güneş sisteminin iç kesimindeki silikat ve metal ağırlıklı cisimler çarpışmalar ve birleşmeler sonucu 1km civarı boyutlara ulaştıklarında, yakın çevrelerini kütleçekimsel olarak etkileyebilen planetesimal’ler dediğimiz ufak parçaları; gezegenimsi parçalarını oluştururlar.

Bir çok planetesimal çarpışmalar sonucu dağılır fakat aralarından bazıları çekimlerine kapılan ve türbülanslar sonucu bünyesine dahil ettiği kaya parçalarıyla sıkışmaya ve büyümeye devam eder. Böylelikle boyutları birkaç yüz km’yi bulan gezegenimsileri oluşur.

Çarpışmaya ve birleşmeye süreçleriyle Güneş Sistemi’nin erken dönemlerinde 50-100 civarı Ay/Mars büyüklüğünde gezegenimsi oluştuğu tahmin edilmektedir. 100 milyon yıl süresince bu gezegenimsiler kütleçekimsel olarak birbirlerini etkiler, çarpışmaya ve büyümeye devam ederler ve sonucunda 4 adet iç gezegeni (Merkür, Venüs, Dünya, Mars) oluştururlar.

theia-smashes-earth

Bu dönemin sonlarına doğru ortalama büyüklüğü Mars kadar olan gezegenimsilerden birinin Dünya’ya çarpması sonucu ise uydumuz Ay oluşmuştur.

İlk 10 milyon yılda dış gezegenler, 100 milyon yılda ise iç gezegenler oluşmakta. Fakat hem iç gezegenlerin oluşum sürecinden arta kalan planetesimaller, hem de dış gezegenlerin yörünge değişimleri nedeniyle Kuiper Kuşağı ve saçılım diskine etki etmeleri nedeniyle; Güneş Sistemi’nde 4.1 ila 3.8 milyon yıl öncesine uzanan, iç gezegenlere yönelik yüksek sayıda meteorit çarpışmasının yaşandığı düşünülen Ağır Bombardıman Dönemi adı verilen bir zaman aralığı vardır.

Ay’daki en büyük kraterler incelendiğinde tarihlenmeleri bu zaman aralığına denk gelir. Dünya’daki suyun da bir kısmı bu dönemde çarpan buz meteoritlerinden gelmektedir.

ay45478211255

Geç Ağır Bombardıman dönemi sonlarında artakalan planetesimal’lerinin bazıları gezegenlerin yörüngeleri tarafından yakalanıp uyduları meydana getirir. Mars’ın uyduları ve Jüpiter gibi devlerin yüksek deklinasyona sahip uyduları bu şekilde yakalanmış cisimlerdir.

Asteroit kuşağı da iç gezegenlerin oluşum döneminde gezegenimsilerin olduğu bir bölgedir. Fakat dev gezegenlerin yörünge değişiklikleri döneminden kalma parçalar pek yoktur. Daha çok Ağır Bombardıman Dönemi sonrası arta kalan gezegenimsiler ve asteroidlerden oluşur. Jüpiter’in çekim gücü nedeniyle yörünge hızları, enerjileri yükseldiği için çarpışma şiddetleri birleşmelerini sağlamaktan çok parçalanmalarını sağlayacak düzeyde olmaktadır.

Hazırlayan: Taylan Kasar

Bu yazımız, sitemizde ilk olarak 1 Nisan 2015 tarihinde yayınlanmış, gözden geçirip hatalardan arındırılarak tekrar yayına sunulmuştur. 

Okumaya devam et

Çok Okunanlar